Processors, FPGAs, and ASICs
Part 1: Full Custom to PLDs

Stephen A. Edwards
Columbia University
Spring 2024
Spectrum of IC choices

Flexible, efficient

- Full Custom
- ASIC
- Gate Array
- FPGA
- PLD
- GP Processor
- SP Processor
- Multifunction
- Fixed-function

You choose

- Polygons (Intel)
- Circuit (Sony)
- Wires
- Logic network
- Logic function
- Program (e.g., ARM)
- Program (e.g., DSP)
- Settings (e.g., Ethernet Ctrl.)
- Part number (e.g., 74HCT00)

Cheap, quick to design
An N-Channel MOS Transistor
An N-Channel MOS Transistor

Oxide (SiO_2)

Gate

Drain (n) Source (n)

Channel (p)
An N-Channel MOS Transistor

Gate at 0V: Off

Oxide (SiO$_2$)

Drain (n)
Source (n)

Channel (p)

+ 3V

Ammeter
An N-Channel MOS Transistor

Gate at 0V: Off

Oxide (SiO₂)

Channel (p)

Drain (n) → Source (n)

Ammeter

3 V

Gate

Source (n) → Drain (n)
An N-Channel MOS Transistor

Gate at 0V: Off

Oxide (SiO$_2$)

Channel (p)

Drain (n) Source (n)

Ammeter

3 V

0 V
An N-Channel MOS Transistor

Gate positive: On

Oxide (SiO$_2$)

Gate

Drain (n) Source (n)

Channel (p)

3 V

Ammeter

3 V
CMOS Inverter Layout
CMOS Inverter Layout

![CMOS Inverter Layout Diagram]
CMOS Inverter Layout

Cross Section Through N-channel FET

Top View
The CMOS NAND Gate

Two-input NAND gate:
Two-input NAND gate:
- two n-FETs in series;
The CMOS NAND Gate

Two-input NAND gate:
two n-FETs in series;
two p-FETs in parallel
The CMOS NAND Gate

Both inputs 1:
Both n-FETs turned on
Output pulled low
Both p-FETs turned off
The CMOS NAND Gate

One input 1, the other 0:
One p-FET turned on
Output pulled high
One n-FET turned on, but does not control output
The CMOS NAND Gate

Both inputs 0:
Both p-FETs turned on
Output pulled high
Full Custom: Intel 4004 Masks (2,250 Transistors)
Standard Cell ASICs
Standard Cell ASICs
Channeled Gate Arrays
Sea-of-Gates
Gate
Arrays
FPGAs: Floorplan
FPGAs: CLB
FPGAs: Routing

Single-length line Switch Matrix connections

Six pass transistors per switch matrix interconnect point

Double-length lines in CLB array

Switch matrices
PLAs/CPLDs: The 22v10