
Design Document: Audio Visualizer
CSEE 4840

Manas Pange (mmp2248)

Yaagna Modi (ykm2110)

Gaurav Agarwal (gsa2131)

Max Lavey (mjl2274)



1. Introduction
This Design Document outlines the development of a custom System Verilog-based Audio Visual-
izer, utilizing Fast Fourier Transforms (FFTs) implemented on Field-Programmable Gate Arrays
(FPGAs) for high-frequency sampling. The core of this venture is to create a visual representation
of the frequency spectrum of audio music signals.

The heart of our system is the FFT Module, meticulously designed to sample 64 instances and
conduct FFTs on these samples, effectively translating the input analog signal into a discernible
frequency spectrum. The visual output is displayed through a VGA Display, offering five distinct
display modes. These modes are ingeniously manipulated by toggling LEDs in varying positions
across each column, allowing for a range of customizable patterns easily modified or created by
the user. Mode selection is facilitated by a push button, enabling users to cycle through display
patterns with each press, ultimately reverting to the default setting. This push button is linked
to a digital input, which is monitored at each cycle of display refresh, ensuring a dynamic and
interactive user experience. This project not only aims to showcase technical prowess in FPGA
programming and FFT analysis but also to enrich the audio experience with a visually stimulating
spectrum display.

1



2. Block Diagram

First, we will take an audio input from an external microphone that is plugged into the
DE1-SOC. This will be a USB microphone that is yet to be purchased. This will go into an
Audio CODEC to be processed and put through an ADC. The CODEC will then be interfaced so
that we can filter and perform Fast Fourier Transform in the hardware. When the audio signal is
finished with its FFT, it will be placed in the FPGA memory to be read out sequentially by the
Audio Driver interface. This driver interface will go through the Avalon Bus to be processed by
the Software. The software has two main components: Audio Processing Logic, and Visualization
Logic. For the Audio Processing Logic, we are going to take the FFT output and process it to
analyze its frequencies. Based on the frequencies read, we will send different information to the
Visualization logic, which will create specific visualizations for different frequencies. These will be
packaged and sent back through the Avalon Bus. This bus will interface with another VGA driver
similar to that of Lab 3, where we can create sprites and visualizations for the individual music
components to be broadcast to the external VGA Monitor.

2



3. Algorithms

Fast Fourier Transform

We are implementing a Fast Fourier Transform (FFT) to process the audio input from the micro-
phone attached to the FPGA. We will be taking our audio input and transforming it to frequency
domain by computing the Discrete Fourier Transform (DFT) of the audio sample. This will allow
us to break it into discrete frequencies and determine the best way to visualise the sound. This
will be done in hardware which will take the input from the ADC and CODEC and place it in
memory sequentially, where it will then be sent to the audio driver to be processed by the software:

1. Input Signal: First we sample the audio input from the microphone, which is a signal
in the time domain. This will be processed by the hardware and converted to a signal in
frequency domain.

2. Divide and Conquer: The FFT is based on a divide and conquer approach. It will
recursively breakdown the Discrete Fourier transform of size N into N

2
, N

4
, N

8
... until reaching

a base case of size one, which for us will be after bits. This recursive splitting has a complexity
of O(NlogN), which is much better than O(N2).

3. Factor Multiplication: During this decomposition, FFT multiplies the values by certain
roots, which are precomputed and stored (thus can be resused during the computation). This
allows us to combine the smaller DFT’s to compute the larger one.

4. Combine Results: After computing each smaller DFT, the algorithm combines them to
create a complete final DFT. All of these operations are linear and can be done efficiently.

3



5. Output: The output of the FFT algorithm is a sequence of numbers representing the
frequency-domain representation of the input signal. These numbers indicate the magnitude
and phase of each frequency component present in the signal. These will be passed through
the memory to be processed by the driver, avalon bus, and eventually the software.

4. Resource Budgets

The FPGA has 512 KB of on chip memory, we will be using roughly 384 KB of this sequen-
tially to store and relay the input audio data to the audio driver, avalon bus, and eventually
the Software to be processed. The FFT will sample at 32 kHz, we will have one channel,
and we will have 4 bytes (32 bits) per sample. This is because we will be using our 32 bit
input modified input signal buffer.

By utilizing the Avalon audio interface, we have the capability to adjust the sample rate and
bit depth of the data transmitted from the Audio CODEC to the FPGA. For instance, with
a sample rate of 32 kHz, a bit depth of 32 bits, and a mono channel spanning 3 seconds, the
calculations unfold as follows:

Total Sample Count = Sample Rate × Duration = 32,000 × 3 = 96,000 samples

Bytes per Sample = Bit Depth ÷ 8 bytes = 32 / 8 = 4 bytes per sample

Total Memory Required = Total Sample Count × Bytes per Sample = 96,000 × 4 = 384,000
bytes = Approximately 384 KB

Given that the audio file adheres to our FPGA memory limit of 512 KB, we can rest assured
that we won’t encounter memory constraints or overlook space for additional overhead.

5. Hardware/Software Interface

Hardware

The Altera DE1 SOC features the WM8731 audio codec, known for its low power consump-
tion and integrated headphone driver, tailored for portable MP3 audio and speech players as
well as recorders. It’s well-suited for applications such as MD, CD-RW machines, and DAT
recorders. An external, passive microphone will be linked to this port to serve as our audio
source. This CODEC possesses various configurations like:

(a) Master mode

(b) Baud rate set to 48 KHz

(c) Input from a microphone

(d) Output to a speaker

4



To achieve this setup, the I2C (Inter-Integrated Circuit) protocol will be utilized for pro-
gramming the Audio CODEC. Analysis reveals a total of 11 distinct registers (R0 – R9,
R15). Upon initial power-up, the registers reset to default values, which may not align with
the desired configuration.

Subsequently, the creation of an I2C serial protocol interface is essential to load the values
from the I2C registers into the internal registers of the audio CODEC.

The objective of this code segment is to generate the required 12.288 MHz input for the
AUD_XCK input on the audio CODEC chip which is the necessary input frequency for
achieving the desired audio frequency of 48 KHz.

5



Software

The Driver Interface functions by fetching samples from the hardware. Synchronized with the
ADC sampling rate of 48kHz, it triggers an irq (interrupt request) to notify the ARM Core
that a sample is ready for retrieval. Subsequently, the device driver manages this interrupt
by fetching data from the Driver Interface through the Avalon bus, which transmits 64 bits
of data via the readdata line of the Avalon interface.

On the software side, the device driver receives data via an interrupt triggered by the driver
interface over the Avalon bus, courtesy of our device driver. Each individual 32-bit sample,
adjusted for octave shifting, is transmitted across the Avalon bus. The device driver then
transfers this data from kernel space to user space for further processing.

Within the C program, audio samples are accumulated. The FFT algorithm executed in the
hardware identifies the highest frequency, from which the corresponding note being played
is extracted. Utilizing the frequency content of the signal, we generate sprites and patterns
to display the notes via a VGA interface.

6



6. Milestones

(a) Preliminary Research: Finalize project scope and objectives. Conduct a thorough
literature review on FFTs, FPGA programming, and System Verilog. Acquire necessary
hardware components (FPGA, ADC, Microphone, VGA Display).

(b) Design Phase: Develop a detailed design document outlining the architecture of the
Audio Visualizer, including the integration of the FFT Module, ADC, and VGA Display.
Create a simulation model for the FFT algorithm to ensure accuracy in frequency
spectrum analysis.

(c) Development of FFT Module: Implement the FFT algorithm in System Verilog to
process analog signals. Test the FFT Module with simulated input signals to validate
its functionality.

(d) Integration of ADC with FPGA: Configure the ADC to mix left and right audio channels
and feed into the FPGA. Implement and test the signal acquisition process to ensure
accurate capture of audio signals.

(e) VGA Display Interface Development: Design and implement the VGA display logic in
C for visual output. Also develop the display drivers in system verilog so that we may
test our visualizations Develop and test five distinct display modes for visualizing the
frequency spectrum.

(f) Testing and Performance Enhancement: Allow time to test each individual component
as well as all of them working together to ensure we meet the project deadline. We also
will be spending time improving performance until it meets our satisfaction. Once we
ensure that our project is working, we can move on to finish the project

(g) Project Closure and Presentation: Prepare a final presentation summarizing the project
development process, challenges encountered, solutions implemented, and demonstra-
tions of the Audio Visualizer in action. Reflect on project outcomes, lessons learned,
and potential future developments.

7


