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1 Project Overview

For our project, we implemented an interpreter for the dependently typed
language slyce1in Haskell. slyce is a pure language that features λ ab-
stractions, let-expressions, if-then-else expressions, abstract data types, and
pattern matching. In addition to user defined abstract data types, the lan-
guage comes with several built in data types: namely Unit, Bool, and Pair.
slyce is also equipped with a parser and exhaustive error checking for pro-
gram debugging. To implement slyce, we referenced tutorials for several
dependently typed languages [? ? ], most notably Stephanie Weirich’s
pi-forall tutorial [? ].

Weirich’s tutorial consists of 9 chapters, 8 of which we implemented in
full. The only exception is pi-forall’s irrelevancy checking. Irrelevance is a
feature that comes from the notion that with dependent types, components
like type annotations and type arguments are only there for proofs and
can be ignored during compilation. Polymorphic functions must behave the
same regardless of the types they are operating on, so they do not depend
on types. We skipped this section for the sake of time and with the comfort
that the feature is an optimization, thus not critical to the core functionality
of the type checker.

We came into this project knowing absolutely nothing about dependent
types, and we have certainly learned a lot throughout this journey. While
some mysteries of dependent type checking still remain (covered in Sec-
tion ??), we have come away from this project with a deep understanding of
much of Weirich’s implementation and a core intuition about her decisions.

2 Installation

To run the type checker, first compile slyce using stack build. Then, to
run slyce on a source file, such as hello.sly located in the examples/

subdirectory, execute the command
stack exec slyce -- -t ./examples/hello.sly

-t is an optional flag that prints the signatures of the checked definitions.
There is also -s for printing the scanned tokens, and -p for printing the
parsed module. If the file failed to scan, parse, or type check, slyce will

1slyce is a reference to the phrase ”slice of pie”, because pie sounds like Π, as in the
Π-calculus, which is the language of dependent types. However, since our project is a
simple toy implementation, it is a ”slice of Π”. Moreover, the ”y” in the name looks like
an upside-down λ, evoking how our language differs from the λ-calculus.
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print an informative error message, complete with the source positions of
where the error occurred.

3 slyce example programs

To give a taste for slyce, we first walk through a set of example programs
that can be found in the examples/ subdirectory of the slyce source code.
These examples provide a concrete reference for slyce’s key features dis-
cussed throughout the rest of this report. While we do not explicitly cover
the syntax of slyce, we hope that a pass over these examples, as well as the
rest in the examples/ subdirectory, serve as an extensive set of use cases.
The full syntax is available in the slyce parser in Parser.hs.

3.1 vec.sly: The ”Hello World” of dependent types

1 data Nat where

2 Zero ,

3 Succ of (Nat).

4

5 zero = Zero.

6 one = Succ zero.

7 two = Succ one.

8 three = Succ two.

9

10 data Vec (a:U) (n:Nat) where

11 Nil of (n = Zero),

12 Cons of (m:Nat) (a) (Vec a m) (n = Succ m).

13

14 head : (a:U) -> (n:Nat) -> Vec a (Succ n) -> a.

15 head = \a. \n. \v.

16 match v with

17 | Cons m x xs -> x.

18

19 v : Vec Nat three.

20 v = Cons two one (Cons one two (Cons zero three Nil)).

The classic use case for dependent types is a vector parameterized by
the type of its elements and its length. In this program, we showcase the
use of data types, Π types, function declaration, and pattern matching.

The type-safe vector data type, Vec is indexed over a specific length
using the dependent type system. The implementation defines two new
data types: Nat and Vec. Nat represents natural numbers and is defined
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recursively as either Zero or the successor of another Nat. Vec represents a
vector of values of type a, which has type U – slyce’s type of types – that
has a length of n elements.

The Vec data type has two constructors: Nil and Cons. Nil creates an
empty vector with a length of zero, and Cons adds an element of type a to
the beginning of an existing vector of length m, resulting in a new vector
with the type same type and a length Succ m, i.e. the length of the tail
incremented by one. The type of the Cons constructor includes a proposition
that the length of the resulting vector is one more than the length of the
input vector. This is not an argument to the constructor, but constraint on
the other arguments.

The head function takes a Vec of length Succ n and returns its first
element, which has type a. The function pattern matches on the input
vector, using the Cons constructor to extract the head element. Since the
vector has length Succ n, it cannot be empty, so this function is type safe:
it cannot result in a runtime error, since passing it an empty vector is a
compile-time type error.

As an example of how to use the vector data type constructors, we
include a definition of a vector of type Vec Nat three (i.e., a vector of
three natural numbers). In each invocation of Cons, the first argument is
the length of the tail vector and the second argument is the element to
prepend to the front of the vector.

4



3.2 list.sly: Lists

1 data List (t:U) where

2 Nil ,

3 Cons of (x:t) (xs:List t).

4

5 map : (a:U) -> (b:U) -> (a -> b) -> List a -> List b.

6 map = \a. \b. \f. \l.

7 match l with

8 | Nil -> Nil

9 | Cons x xs -> Cons (f x) (map a b f xs).

10

11 foldr : (a:U) -> (b:U) -> (a -> b -> b) -> b -> List a -> b

.

12 foldr = \a. \b. \f. \acc. \l.

13 match l with

14 | Nil -> acc

15 | Cons x xs -> f x (foldr a b f acc xs).

16

17 any : List Bool -> Bool.

18 any = foldr Bool Bool or False.

19

20 all : List Bool -> Bool.

21 all = foldr Bool Bool and True.

This example demonstrates a small library of list functions. Lists are
written as in Haskell: they are parameterized by the type of their elements,
but do not include information about their length.

Due to parametric polymorphism, the polymorphic map and fold func-
tions must take type arguments.
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3.3 largeelim.sly: Propositional equality

1 not : Bool -> Bool.

2 not = \x. if x then False else True.

3

4 t : Bool -> U.

5 t = \b. if b then Unit else Bool.

6

7 bar : (y : Bool) -> t y.

8 bar = \b. if b then () else True.

9

10 x : Unit.

11 x = bar True.

12

13 y : Bool.

14 y = bar False.

15

16 z : (Unit = t True).

17 z = Refl.

18

19 w : (Bool = t False).

20 w = Refl.

This example demonstrates a simple use of dependent types to write an
use a function, bar, whose output type depends on the value of its input.

The use of bar is shown in x and y, which have different types depending
on what value was passed to bar.

Furthermore, we use propositional equality to demonstrate that t True

really is equal to Unit, and respectively for False and Bool.
Refl is a language built-in proof of reflexivity, i.e., witness of an equal-

ity type that corresponds to a proposition that two propositions are equal.
Since these equality propositions are true by definition of t, the program
type checks. This works due to our implementation of definitional equality,
which reduces terms to weak head normal form when checking if they are
equivalent. See implementation for more details.

If we swapped the arguments to the types of z and w, the program would
fail to type check, as it cannot prove that t False is equal to Unit... because
it isn’t!
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3.4 sym.sly: Propositional equality

1 sym : (a:U) -> (x:a) -> (y:a) -> (x = y) -> y = x.

2 sym = \a. \x. \y. \pf. subst Refl by pf.

3

4 not : Bool -> Bool.

5 not = \x. if x then False else True.

6

7 false_is_not_true : False = (not True).

8 false_is_not_true = Refl.

9

10 not_true_is_false = sym Bool False (not True)

false_is_not_true.

To elaborate further on propositional equality, we exhibit a function that
proves the symmetric property of equality.

Given a proof, pf, that proposition x equals proposition y , sym returns
a proof that y = x. It achieves this by using the built-in function subst,
which in this case substitutes the reflexivity proof into the proof of equality,
thus swapping the variables and returning a new proof.

The rest of the file is an example of using this symmetry prover to show
that False = not True implies not True = False. This would fail to type
check if we gave it an untrue equality proposition.

Propositional equality is a deep and subtle art which we have not fully
explored or understood. This aspect of slyce connects us closely to depen-
dently typed languages like Agda and Coq, which prominently feature the
application of dependent types to logic and theorem proving.

4 Our approach

Our implementation process for slyce was iterative, and consisted of four
main components when tackling any given feature.

1. Read pi-forall’s explanation of the specific feature we sought to
implement

2. Attempt to implement the feature while referencing the explanation

3. Compare our approach with Weirich’s source code

4. Test our additions with some examples and debug (a lot)
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Following the style of the pi-forall tutorial, we began with a simple,
core language without any bells and whistles. Our first iterations of slyce
were without error messages or a parser. Thus, step 5 of the implementation
process was originally primitive. We began with simply loading our modules
into Haskell’s ghci environment and testing from there. As we progressed
farther in the tutorial and type checking features built in complexity, we
added these tools in response to the need for convenience of testing and
better error reporting for debugging. This process ensured that we deeply
understood the foundation of our type checker before we began to add new,
more involved features. It also allowed us to motivate our own development
of the peripheral features of our language; since Weirich’s tutorial focuses
on only the type checker and a few other components, we had the freedom
to adopt our own approach to the parser, pretty printer, error tracer, and
datatypes.

The core theories behind dependent type checking in slyce largely mir-
ror that of pi-forall. Weirich’s tutorial covers the theory and leaves all the
other features that must come with a usable dependent type checker up to
interpretation. For that reason, we diverge the most from pi-forall in our
parser and error tracing approaches, though upon reflection in Section ??,
we wish we had implemented our parser in the pi-forall style from the
beginning due to fundamental differences between parser combinators and
parser generators.

5 Background: Dependent types

The key feature showcased in slyce is dependent type checking.
Dependent types are one direction in Barendregt’s lambda cube describ-

ing types that depend on terms. In a dependently typed language like slyce,
little or no distinction is made between terms and types. Types may be pa-
rameterized not just by other types, but by terms as well. For instance, a
type like Vec (a:U) (n:Nat) is parameterized by a type and a term, and
specific instances of this type in a type signature may even call type con-
structors, data constructors, or functions that return types, such as Succ

(n:Nat).
The examples above provide a good overview of some of the key features

of dependently typed languages. Some of the especially cool features of
dependent types, which motivated us to explore this area, include type safety
and a robust system for propositions as types.

Implementing dependent types requires the programmer to pay attention
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to many subtle details that are not as relevant in other type systems such
as System F. The fundamental difference is that because types may depend
on terms, deciding whether two types (or terms) are equivalent for the pur-
poses of type checking is highly non-trivial, and necessarily involves some
amount of compile-time evaluation. Following Weirich’s tutorial, we have
accomplished this using weak head normal form reduction of terms/types.

Some other difficulties that may arise when implementing dependent
types may include: unification, distinguishing constructors and functions,
and many more possibilities to introduce parser ambiguities because the
line between types and terms breaks down.

The subtleties of dependent types imply various approaches to their im-
plementation. The implementation that follows has its own advantages and
limitations. Regrettably, since we focused mainly on implementing Weirich’s
tutorial, we are unable to provide a detailed comparison between this and
other approaches, nor are we confident to describe the theoretical underpin-
nings of our particular implementation and a proof of its properties. This
would require a knowledge of dependent type theory that we simply do not
possess. However, we hope that our future studies will expose us to the
depth of dependent type theory. Implementing this language has allowed us
to dip our toes in the water, and we are excited to dive in.

6 Bidirectional type system

The slyce type system makes use of bidirectional typing. A bidirectional
type system splits up type rules into two categories of judgements: infer-
ence judgements and checking judgements. The following rules serve as a
sketch for slyce’s core bidirectional type system, though they notably do
not include rules for checking data constructors, equality types, and case
expressions. To get a sense for these typing rules, please refer to [? ].

6.1 Type Inference: Γ ⊢ a ⇒ A

Type inference, Γ ⊢ a ⇒ A2, dictates that in the context Γ, we should infer
that a term a has type A. The inference rules for slyce are outlined below.
In many rules, type inference depends on type checking.

Judgements I-app and I-let make use of definitional equality to perform
type inference. The explanation and implementation of this property can
be found in section ??.

9



Figure 1: Type inference rules for slyce

x : A ∈ Γ
I-var

Γ ⊢ x ⇒ A
I-type

Γ ⊢ U ⇒ U

Γ ⊢ A ⇐ U
Γ, x : A ⊢ B ⇐ U

I-Pi
Γ ⊢ (x : A) → B ⇒ U

Γ ⊢ A ⇐ U
Γ ⊢ a ⇐ A

I-ann
Γ ⊢ (a : A) ⇒ A

Γ ⊢ a ⇒ A Γ, x : A, x = a ⊢ b ⇒ B
I-let

Γ ⊢ let x = a in b ⇒ B[a/x]

Γ ⊢ a ⇒ A whnf A⇝ (x : A1) → B Γ ⊢ b ⇐ A1
I-app

Γ ⊢ a b ⇒ B[b/x]

6.2 Type Checking: Γ ⊢ a ⇐ A

Type checking, Γ ⊢ a ⇐ A, makes use of information from the context Γ, like
the types of top-level definitions, to look up the type of a and check that
it matches the known type A. The checking rules for slyce are outlined
below.

Figure 2: Type checking rules for slyce

Γ, x : A ⊢ a ⇐ B
C-lambda

Γ ⊢ λx.a ⇐ (x : A) → B

Γ ⊢ a ⇒ A Γ, x : A, x = a ⊢ b ⇐ B
C-let

Γ ⊢ let x = a in b ⇐ B

Γ ⊢ x ⇐ Bool
Γ, x = True ⊢ b1 ⇐ A Γ, x = False ⊢ b2 ⇐ A

C-if
Γ ⊢ if x then b1 else b2 ⇐ A

Γ ⊢ z ⇒ (x : A1 ∗ A2) Γ, x : B1, y : B2, z = (x, y) ⊢ b ⇐ B[(x, y)/z]
C-letpair

Γ ⊢ let (x, y) = z in b ⇐ B

Judgements C-let, C-letpair and C-if make use of definitional equality
and propositional equality to type check. The explanation and implementa-
tion of these properties can be found in Sections ?? and ??.

2We are following the style of Weirich’s bidirectional type system: ⇒ for type inference

10



7 Haskell implementation: code overview

7.1 Main.hs

The entrypoint to our type checker is Main.hs. Here, we parse the command
line options and arguments, call the scanner, parser, and type checker, and
print the results or report an error.

7.2 Ast.hs

The abstract syntax tree. This file contains data type definitions for all
of the constructs in the language, along with some important typeclass in-
stances and derivations so that we can use Unbound and other libraries on
our language.

7.3 Context.hs

This file defines the monad, TcMonad, that we use to pass state through
our type checker. The monad consists of a stack of monad transformers:
Unbound’s freshness monad for name capture, a ReaderT for getting dec-
larations and position information from the environment, an ExceptT for
error handling and debugging messages, and IO at the bottom for printing
the result.

This file also defines the helper functions which interact with TcMonad.
These largely fall into two categories: functions which lookup a name in the
environment, and functions which extend the environment with a new defi-
nition or type signature. These are used frequently for a variety of purposes
throughout our type checker.

7.4 TypeCheck.hs

This is the core of our implementation and the largest file in our soft-
ware. TypeCheck exports the functions for taking a module or an indi-
vidual declaration and type checking it in a given context. These are called
typeCheckModule and typeCheckDecl respectively. To do this, it makes
use of one central function called typeCheckTerm and a number of helpers.

typeCheckTerm is a syntax-directed function that takes a term and, op-
tionally, a type to check it against. If no type is given, it tries to infer the
type. It has a case for every possible syntactic construct in the AST.

and ⇐ for type checking. These can be swapped for ↑ and ↓ respectively when referring
to the bidirectional style outline in the lecture notes.
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When dealing with pattern matching, we make use of several helpers that
convert a pattern to a declaration so that it can be added to the context.
This allows us to check the bodies of case branches with the variables from
the pattern in context. It is important to note that we have left exhaustivity
checking unimplemented due to time constraints. This does not reduce the
expressiveness of our language, but it would be a useful warning to report
to the user, and a good exercise to implement.

Type checking type and data constructor applications requires checking
the arguments against a “telescope” of formals that have type signatures or
constraints that must be obeyed. Since this checking is complex, we define
some helper functions and use those. One key aspect of these functions
is that, because this is a dependent type system, each subsequent formal
in a telescope may reference the names of previous formals. Hence the
telescoping structure, wherein every time we successfully check an actual
argument with a formal, we extend the context with this new definition of
the name so that later formals in the telescope can use it.

Throughout the type checker, we use functions from the Equality mod-
ule in order to compare two terms for equivalence, reduce terms to weak
head normal form, unify two terms, and ensure that certain terms have
certain types. See below for details.

7.5 Equality.hs

This file defines definitional equality for our type system. The key functions
it exports are equal, for checking if two terms are definitionally equal; whnf,
for reducing a term to weak head normal form; and unify, for unifying terms
to make them equivalent. There are other functions defined here for various
small conveniences.

equal, whnf, and unify are, like typeCheckTerm, all structured as cas-
ing over the various syntactic forms in the AST. While these were simple to
implement, they harbor a depth and subtlety seen nowhere else in this type
checker. We do not purport to fully understand how and why unification
works. This is one place where we are unsure what effect a small change in
the implementation might have. However, we understand that unification
is used for creating declarations that unify (i.e. produce a single declara-
tion that extends the context with a succint definition) patterns in pattern
matching branches with the scrutinee, and constraints in data types with
the arguments passed in to constructors.
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7.6 Scanner.x and Parser.y

We implemented the scanner and parser in Alex and Happy, respectively.
The parser uses a state monad that carries the names of type and data con-
structors so that we can use them in the type checker. Our initial idea when
we implemented data types was to differentiate them from other variable
names during parsing using this monad, but unfortunately Happy does not
appear to support this feature.

Currently, there are many shift/reduce and reduce/reduce errors, mainly
due to ambiguities surrounding the parsing of function application and con-
structor application. If we had more time, we would rewrite this as a parser
combinator using Parsec.

7.7 PrettyPrint.hs

This file implements a very basic pretty printer for our language. There is
nothing especially to note here.

8 Key features

We would like to highlight and discuss a few key features with an eye towards
implementation.

8.1 Π types

The central feature of any dependent type system is the Π type. This is the
type of functions where the output type may depend on the input type. In
order to implement this, our Pi constructor in the AST takes a name and
type for the input type and a term for the output type, where the name is
bound in the output type.

To type check lambda abstractions, we must check the type of the body
with the bound variable of the abstraction added to the context with the
input type of the Pi type.

To type check function application, we must instantiate the Pi type of
the function with the value being applied.

8.2 Equality types

With propositions as types, equality types are a very interesting feature
of our language. Equality types merely represent that two . They are
associated with two forms: Refl (a value of an equality type) and Subst a
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b, which allows us to use equality proofs to transform arbitrary terms into
desired equivalent terms.

When type checking Refl, we must verify that the types it claims are
equal are in fact definitionally equal.

When type checking Subst, we verify that that proof passed in has equal-
ity type, and then we add new definitions to the context that allow the type
checker to make use of equality to produce the desired new output type.

8.3 Flow sensitivity

Flow sensitivity is an optimization for eliminators like If that, instead of
just simply type checking each branch of the If, makes use of the contextual
information implied by the flow. Specifically, in If, when type checking the
consequent branch, if the condition can be reduced to a variable, we add a
new declaration to the context just for this branch that equates the condition
with True (and respectively for the False case). This can help simplify the
type checking of each branch.

We perform a similar optimization for the LetPair eliminator.

8.4 Data types

Data types are the feature that allows us to express more interesting con-
structs, proofs, and programs in our language.

The implementation of data types is briefly described above, but it is
too complex to go into detail here. Please see our implementation, which
contains many comments documenting the process of type checking data
types.

In order to effectively use data types, we implement general dependent
pattern matching via a Match expression, equivalent to Haskell’s case x of

... expression. The implementation of this involves unifying each pattern
with the reduced scrutinee in order to effectively type check each body of
the match expression.

9 Discussion and reflections

Upon much reflection and experience with this tutorial, our main takeaway
from this project is to always trust Stephanie Weirich! Many times through-
out our development process, after checking our implementation of a feature
with pi-forall, we would conclude that the subtle differences in our ap-
proaches were irrelevant. Later down the line–sometimes much later–we
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would come to realize that those differences actually make or break the type
checker.

A concrete example of this is the API call to the
Unbound.Generics.LocallyNameless library’s freshness monad to gener-
ate fresh names for our terms. In pi-forall and slyce, the Unbound.unbind
is used to unbind term names from their bodies in λ expressions and Π types.
When unbinding two different term names from their bodies and checking
for propositional equivalence, pi-forall uses Unbound.unbind2Plus to un-
bind the two terms at the same time. After reading the documentation that
was referred to in the tutorial on this call, we concluded that our origi-
nal approach of unbinding the names separately was satisfactory. It was
only after implementing extensive error messages, painstakingly tracing a
program through the entire type checker, and hours of debugging when
we realized that this decision was the source of very subtle naming error.
Unbound.unbind2Plus unbinds two names and gives them the same fresh
name, while Unbound.unbinding separately results in different names, even-
tually causing an error when performing equivalence checking.

We suffered a similar comeuppance when, after initially deciding that
it would be simpler to use the Happy LALR parser generator instead of
using an LL parser combinator like Weirich, we found that our parser was
unable to satisfactorily parse data types. This was the last chapter and
the last thing we implemented, so it became a frantic search to find a way
to distinguish constructors from function application and type constructors
from data constructors. We settled on a solution that works for most cases,
but due to time limitations, we are left with numerous shift/reduce and
reduce/reduce errors that make our parser fragile; it frequently incorrectly
parses function application. Had we more time, we would either reimplement
our parser using parser combinators like Weirich does, or adopt the approach
that SSLANG takes of using SYB’s everywhere function to modify the
abstract syntax tree after an initial parse.

One drawback of this reflection is that pi-forall is a delicate piece of
software. It left very little room for experimentation or divergence from the
source code, especially as we got further and further into the tutorial. This
is not necessarily a criticism of the tutorial, as it certainly accomplishes its
pedagogical goal and we learned a ton. This is more a reflection on the
complexity and subtlety of dependent type theory. That being said, the dif-
ficulties we encountered forced us to really understand what was going on. If
Weirich had included more documentation or explanation of some more ar-
cane choices, we might not have come away with such a deep understanding
of our own implementation.
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The specificity of the pi-forall language and its quirks also rendered
the many other dependent type checker tutorials unhelpful because little
seemed to carry over to Weirich’s approach. Even though many of the prob-
lems other tutorials tackle are the same, the approach tends to be completely
different, and in many cases, we found ourselves unsure about whether small
changes to the implementation would change important properties of the
type system, such as making it unsound. We lack confidence in our abil-
ity to reason about how minor alterations to the type checker would have
butterfly effects on the properties of our system.

For example, we struggled with the lack of documentation and relevance
of the Unbound.instantiate call for substitution when performing reduc-
tion via weak head normal form. In our implementation, when performing
substitution into the bodies of let-expressions and applications, we were first
unbinding the binder and then performing the substitution. Weirich, on the
other hand, uses the special Unbound.instantiate call which essentially
combines these processes. Upon investigation, we discovered that Weirich
herself implemented this feature into the library specifically for pi-forall,
and Unbound.instantiate was just made available in the latest release of
the library, though this tutorial was published last year.

Another example: early on, we figured there was no good reason that
Weirich processes functions and signatures one at a time, as opposed to
adding them all to the context at once. For simplicity, and because Weirich
did not explain this choice in the tutorial or the code documentation, we
opted for the latter. This ended up making our type system unsound, and
a long session with ChatGPT helped us understand how we could detect
unsoundness through examples. We ended up implementing an approach
nearly identical to that of Weirich.

We believe that the process of ”misconception to realization to correc-
tion” is a very valuable outcome of the project. The only way we could
truly understand the value and inner workings of the implementation was
to try it ourselves and then come to the conclusion that we were wrong,
after re-examination. We would not have been able to conceptualize much
of pi-forall’s source code without this time-consuming yet ultimately re-
warding process.
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