
Types, Type Classes,
Polymorphism,

and Pattern Matching

Stephen A. Edwards

Columbia University

Fall 2023

Basic Haskell Types

Function Types

Polymorphism and Type Variables

Typeclasses

Patterns

Algebraic Data Types

Parameterized Types: Maybe

The type keyword

The Either Type

Lists as an Algebraic Data Type

Specifying and Implementing Type Classes

The Functor Type Class

Kinds: The Type of Types

Numeric Conversions

Types in Haskell

Haskell is statically typed: every expression’s
type known at compile-time

Haskell has type inference: the compiler can
deduce most types itself

Type names start with a capital letter (Int,
Bool, Char, etc.)

GHCi’s :t command reports the type of any
expression

Read “::” as “is of type”

Prelude> :t 'a'
'a' :: Char

Prelude> :t True
True :: Bool

Prelude> :t "Hello"
"Hello" :: [Char]

Prelude> :t (True, 'a')
(True, 'a') :: (Bool, Char)

Prelude> :t 42 == 17
42 == 17 :: Bool

Some Common Types

Bool Booleans: True or False

Char A single Unicode character, about 25 bits

Int Word-sized integers; the usual integer type. E.g., 64
bits on my x86_64 Linux desktop

Integer Unbounded integers. Less efficient, so only use if you
need really big integers

Float Single-precision floating point

Double Double-precision floating point

The Types of Functions

In a type, -> indicates a function

Prelude> welcome x = "Hello " ++ x
Prelude> welcome "Stephen"
"Hello Stephen"
Prelude> :t welcome
welcome :: [Char] -> [Char]

“Welcome is a function that takes a list of characters and produces a list of
characters”

Multi-argument functions are Curried
Haskell functions have exactly one argument.
Functions with “multiple arguments” are actually
functions that return functions that return functions.

Such “currying” is named after Haskell Brooks Curry,
who is also known for the Curry-Howard
Correspondence (“programs are proofs”).

Prelude> say x y = x++" to "++y
Prelude> :t say
say :: [Char] -> [Char] -> [Char]
Prelude> say "Hello" "Stephen"
"Hello to Stephen"

Prelude> :t say "Hello"
say "Hello" :: [Char] -> [Char]

Prelude> hello s = say "Hello" s
Prelude> hello "Fred"
"Hello to Fred"
Prelude> :t hello
hello :: [Char] -> [Char]
Prelude> hello = say "Hello"
Prelude> hello "George"
"Hello to George"
Prelude> :t hello
hello :: [Char] -> [Char]

Top-level Type Declarations

It is good style in .hs files to include type declarations for top-level functions

Best documentation ever: a precise, compiler-verified function summary

−− addThree.hs
addThree :: Int -> Int -> Int -> Int
addThree x y z = x + y + z

Prelude> :l addThree
[1 of 1] Compiling Main (addThree.hs, interpreted)
Ok, one module loaded.

*Main> :t addThree
addThree :: Int -> Int -> Int -> Int

*Main> addThree 1 2 3
6

Polymorphism and Type Variables
Haskell has excellent support for polymorphic functions

Haskell supports parametric polymorphism, where a value may be
of any type

Haskell also supports ad hoc polymorphism, where a value may be
one of a set of types that support a particular group of operations

Parametric polymorphism: the head function

Prelude> :t head
head :: [a] -> a

Here, a is a type variable that ranges over every possible type.

Prelude> :t fst
fst :: (a, b) -> a

Here, a and b are distinct type variables, which may be equal or different

Ad Hoc Polymorphism and Type Classes

Haskell’s ad hoc polymorphism is provided by Type Classes, which specify a
group of operations that can be performed on a type (think Java Interfaces)

Prelude> :t (==)
(==) :: Eq a => a -> a -> Bool

“The (==) function takes two arguments of type a, which must be of the Eq
class, and returns a Bool”

Members of the Eq class can be compared for equality

A type may be in multiple classes; multiple types may implement a class

Common Typeclasses
Eq Equality: == and /=

Ord Ordered: Eq and >, >=, <, <=, max, min, and compare, which gives
an Ordering: LT, EQ, or GT

Enum Enumerable: succ, pred, fromEnum, toEnum (conversion to/from
Int), and list ranges

Bounded minBound, maxBound

Num Numeric: (+), (-), (*), negate, abs, signum, and fromInteger

Real Num, Ord, and toRational

Integral Real, Enum, and quot, rem, div, mod, toInteger, quotRem, divMod

Show Can be turned into a string: show, showList, and showsPrec (op-
erator precedence)

Read Opposite of Show: string can be turned into a value: read et al.

Ord, Enum, and Bounded Typeclasses
Prelude> :t (>)
(>) :: Ord a => a -> a -> Bool
Prelude> :t compare
compare :: Ord a => a -> a -> Ordering

Prelude> :t succ
succ :: Enum a => a -> a

Prelude> maxBound :: Int
9223372036854775807
Prelude> minBound :: Char
'\NUL'
Prelude> maxBound :: Char
'\1114111'
Prelude> minBound :: (Char, Char)
('\NUL','\NUL')

The Num Typeclass
Prelude> :t 42
42 :: Num p => p −− Numeric literals are polymorphic
Prelude> :t (+)
(+) :: Num a => a -> a -> a −− Arithmetic operators are, too

Prelude> :t 1 + 2
1 + 2 :: Num a => a
Prelude> :t (1 + 2) :: Int
(1 + 2) :: Int :: Int −− Forcing the result type
Prelude> :t (1 :: Int) + 2
(1 :: Int) + 2 :: Int −− Type of one argument forces the type

Prelude> :t (1 :: Int) + (2 :: Double)
<interactive>:1:15: error:

 * Couldn't match expected type 'Int' with actual type 'Double'
 * In the second argument of '(+)', namely '(2 :: Double)'
 In the expression: (1 :: Int) + (2 :: Double)

The Integral and Fractional Typeclasses
Prelude> :t div
div :: Integral a => a -> a -> a −− div is integer division
Prelude> :t toInteger
toInteger :: Integral a => a -> Integer −− E.g., Int to Integer
Prelude> :t fromIntegral
fromIntegral :: (Integral a, Num b) => a -> b −− Make more general
Prelude> 1 + 3.2
4.2 −− Fractional
Prelude> (1 :: Int) + 3.2

 * No instance for (Fractional Int) arising from the literal '3.2'
 * In the second argument of '(+)', namely '3.2'
 In the expression: (1 :: Int) + 3.2
 In an equation for 'it': it = (1 :: Int) + 3.2

Prelude> fromIntegral (1 :: Integer) + 3.2
4.2 −− Num + Fractional
Prelude> :t (/)
(/) :: Fractional a => a -> a -> a −− Non−integer division

The Show Typeclass
Show is helpful for debugging

Prelude> :t show
show :: Show a => a -> String
Prelude> show 3
"3"
Prelude> show 3.14159
"3.14159"
Prelude> show pi
"3.141592653589793"
Prelude> show True
"True"
Prelude> show (True, 3.14)
"(True,3.14)"
Prelude> show ["he","llo"]
"[\"he\",\"llo\"]"

Patterns

You can define a function with patterns

Patterns may include literals, variables, and _ “wildcard”

badCount :: Integral a => a -> String
badCount 1 = "One"
badCount 2 = "Two"
badCount _ = "Many"

Patterns are tested in order; put specific first:

factorial :: (Eq a, Num a) => a -> a
factorial 0 = 1
factorial n = n * factorial (n - 1)

Pattern Matching May Fail

Prelude> :{
Prelude| foo 'a' = "Alpha"
Prelude| foo 'b' = "Bravo"
Prelude| foo 'c' = "Charlie"
Prelude| :}
Prelude> :t foo
foo :: Char -> [Char]
Prelude> foo 'a'
"Alpha"
Prelude> foo 'd'
"*** Exception: <interactive>:(23,1)-(25,19): Non-exhaustive

 patterns in function foo

Let the Compiler Check for Missing Cases

Much better to get a compile-time error than a runtime error:

Prelude> :set -Wall
Prelude> :{
Prelude| foo 'a' = "Alpha"
Prelude| foo 'b' = "Bravo"
Prelude| :}

<interactive>:32:1: warning: [-Wincomplete-patterns]
 Pattern match(es) are non-exhaustive
 In an equation for 'foo':
 Patterns not matched: p where p is not one of {'b', 'a'}

Prelude> :set -Wincomplete-patterns

Pattern Matching on Tuples

A tuple in a pattern lets you dismantle the tuple. E.g., to implement fst,

Prelude> fst' (x,_) = x
Prelude> :t fst'
fst' :: (a, b) -> a
Prelude> fst' (42,28)
42
Prelude> fst' ("hello",42)
"hello"

Prelude> addv (x1,y1) (x2,y2) = (x1 + x2, y1 + y2)
Prelude> :t addv
addv :: (Num a, Num b) => (a, b) -> (a, b) -> (a, b)
Prelude> addv (1,10) (7,3)
(8,13)

Patterns in List Comprehensions

Usually, where you can bind a name, you can use a pattern, e.g., in a list
comprehension:

Prelude> :set +m
Prelude> pts = [(a,b,c) | c <- [1..20], b <- [1..c], a <- [1..b],
Prelude| a^2 + b^2 == c^2]
Prelude> pts
[(3,4,5),(6,8,10),(5,12,13),(9,12,15),(8,15,17),(12,16,20)]

Prelude> perimeters = [a + b + c | (a,b,c) <- pts]

Prelude> perimeters
[12,24,30,36,40,48]

Pattern Matching On Lists

You can use : and [,,,]-style expressions in patterns

Like fst, head is implemented with pattern-matching

Prelude> :{
Prelude| head' (x:_) = x
Prelude| head' [] = error "empty list"
Prelude| :}

Prelude> :t head'
head' :: [p] -> p

Prelude> head' "Hello"
'H'

Pattern Matching On Lists
Prelude> :{
Prelude| dumbLength [] = "empty"
Prelude| dumbLength [_] = "singleton"
Prelude| dumbLength [_,_] = "pair"
Prelude| dumbLength [_,_,_] = "triple"
Prelude| dumbLength _ = "four or more"
Prelude| :}

Prelude> :t dumbLength
dumbLength :: [a] -> [Char]
Prelude> dumbLength []
"empty"
Prelude> dumbLength [1,2,3]
"triple"
Prelude> dumbLength (replicate 10 ' ')
"four or more"

List Pattern Matching Is Useful on Strings

Prelude> :{
Prelude| notin ('i':'n':xs) = xs
Prelude| notin xs = "in" ++ xs
Prelude| :}

Prelude> notin "inconceivable!"
"conceivable!"
Prelude> notin "credible"
"incredible"

Pattern Matching On Lists with Recursion

Prelude> :{
Prelude| length' [] = 0
Prelude| length' (_:xs) = 1 + length' xs
Prelude| :}
Prelude> :t length'
length' :: Num p => [a] -> p
Prelude> length' "Hello"
5

Prelude> :{
Prelude| sum' [] = 0
Prelude| sum' (x:xs) = x + sum' xs
Prelude| :}
Prelude> sum' [1,20,300,4000]
4321

The “As Pattern” Names Bigger Parts

Syntax: <name>@<pattern>

Prelude> :{
Prelude| initial "" = "Nothing"
Prelude| initial all@(x:_) = "The first letter of " ++ all ++
Prelude| " is " ++ [x]
Prelude| :}

Prelude> :t initial
initial :: [Char] -> [Char]
Prelude> initial ""
"Nothing"
Prelude> initial "Stephen"
"The first letter of Stephen is S"

Guards: Boolean constraints

Patterns match structure; guards (Boolean expressions after a |) match value

Prelude> :{
Prelude| heightEval h
Prelude| | h < 150 = "You're short"
Prelude| | h < 180 = "You're average"
Prelude| | otherwise = "You're tall" -- otherwise = True
Prelude| :}

Prelude> heightEval 149
"You're short"
Prelude> heightEval 150
"You're average"
Prelude> heightEval 180
"You're tall"

Filter: Keep List Elements That Satisfy a Predicate

odd and filter are Standard Prelude functions

odd n = n ̀ rem` 2 == 1

filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []
filter p (x:xs) | p x = x : filter p xs

 | otherwise = filter p xs

Prelude> filter odd [1..10]
[1,3,5,7,9]

Compare: Returns LT, EQ, or GT
Another Standard Prelude function

x ̀ compare` y
 | x < y = LT
 | x == y = EQ
 | otherwise = GT

Prelude> :t compare
compare :: Ord a => a -> a -> Ordering
Prelude> compare 5 3
GT
Prelude> compare 5 5
EQ
Prelude> compare 5 7
LT
Prelude> 41 ̀ compare` 42
LT

Where: Defining Local Names
triangle :: Int -> Int -> Int -> String
triangle a b c

 | a + b < c || b + c < a || a + c < b = "Impossible"
 | a + b == c || a + c == b || b + c == a = "Flat"
 | right = "Right"
 | acute = "Acute"
 | otherwise = "Obtuse"
 where
 right = aa + bb == cc || aa + cc == bb || bb + cc == aa
 acute = aa + bb > cc && aa + cc > bb && bb + cc > aa
 sqr x = x * x
 (aa, bb, cc) = (sqr a, sqr b, sqr c)

Order of the where clauses does not matter

Indentation of the where clauses must be consistent

Where blocks are attached to declarations

The Primes Example

primes = filterPrime [2..]
 where filterPrime (p:xs) =
 p : filterPrime [x | x <- xs, x ̀ mod` p /= 0]

[2..] The infinite list [2,3,4,...]

where filterPrime Where clause defining filterPrime

(p:xs) Pattern matching on head and tail of list

p : filterPrime ... Recursive function application

[x | x <- xs, x ‘mod‘ p /= 0] List comprehension: everything in xs not
divisible by p

case...of Is a Pattern-Matching Expression

Defining a function with patterns is syntactic sugar for case...of

badCount 1 = "One"
badCount 2 = "Two"
badCount _ = "Many"

is equivalent to

badCount x = case x of
 1 -> "One"
 2 -> "Two"
 _ -> "Many"

But, like let, case...of is an expression and may be used as such:

describeList :: [a] -> String
describeList xs = "The list is " ++ case xs of [] -> "empty"

 [x] -> "a singleton"
 _ -> "two or more"

Algebraic Data Types
data Bool = False | True

Bool: Type Constructor False and True: Data Constructors

Prelude> data MyBool = MyFalse | MyTrue

Prelude> :t MyFalse
MyFalse :: MyBool −− A literal
Prelude> :t MyTrue
MyTrue :: MyBool

Prelude> :t MyBool
<interactive>:1:1: error: Data constructor not in scope: MyBool
Prelude> :k MyBool
MyBool :: * −− A concrete type (no parameters)

Algebraic Types and Pattern Matching
data Bool = False | True

Type constructors may appear in type signatures;
data constructors in expressions and patterns

Prelude> :{
Prelude| myAnd :: Bool -> Bool -> Bool
Prelude| myAnd False _ = False
Prelude| myAnd True x = x
Prelude| :}

Prelude> [(a,b,myAnd a b) | a <- [False, True], b <- [False, True]]
[(False,False,False),(False,True,False),

 (True,False,False),(True,True,True)]

An Algebraic Type: A Sum of Products
data Shape = Circle Float Float Float

 | Rectangle Float Float Float Float

Sum = one of A or B or C...

Product = each of D and E and F...

A.k.a. tagged unions, sum-product types

Mathematically,

Shape=Circle∪Rectangle

Circle= Float×Float×Float

Rectangle= Float×Float×Float×Float

An Algebraic Type: A Sum of Products
data Shape = Circle Float Float Float

 | Rectangle Float Float Float Float

area :: Shape -> Float
area (Circle _ _ r) = pi * r ̂ 2
area (Rectangle x1 y1 x2 y2) = (abs $ x2 - x1) * (abs $ y2 - y1)

*Main> :t Circle
Circle :: Float -> Float -> Float -> Shape

*Main> :t Rectangle
Rectangle :: Float -> Float -> Float -> Float -> Shape

*Main> :k Shape
Shape :: *

*Main> area $ Circle 10 20 10
314.15927

*Main> area $ Rectangle 10 10 20 30
200.0

Printing User-Defined Types: Deriving Show

*Main> Circle 10 20 30

<interactive>:9:1: error:
 * No instance for (Show Shape) arising from a use of 'print'
 * In a stmt of an interactive GHCi command: print it

Add deriving (Show) to make the compiler generate a default show:

data Shape = Circle Float Float Float
 | Rectangle Float Float Float Float
 deriving Show

*Main> Circle 10 20 30
Circle 10.0 20.0 30.0

*Main> show $ Circle 10 20 30
"Circle 10.0 20.0 30.0"

Many Automatic Derivations
data Bool = False | True −− Standard Prelude definition

 deriving (Eq, Ord, Enum, Read, Show, Bounded)

Prelude> True == True
True −− Eq
Prelude> False < False
False −− Ord
Prelude> succ False
True −− Enum
Prelude> succ True

*** Exception: Prelude.Enum.Bool.succ: bad argument
Prelude> read "True" :: Bool
True −− Read
Prelude> show False
"False" −− Show
Prelude> minBound :: Bool
False −− Bounded

Types as Documentation

When in doubt, add another type

data Point = Point Float Float deriving Show
data Shape = Circle Point Float

 | Rectangle Point Point
 deriving Show

area :: Shape -> Float
area (Circle _ r) = pi * r ̂ 2
area (Rectangle (Point x1 y1) (Point x2 y2)) =

 (abs $ x2 - x1) * (abs $ y2 - y1)

*Main> area $ Rectangle (Point 10 20) (Point 30 40)
400.0

*Main> area $ Circle (Point 0 0) 100
31415.928

moveTo :: Point -> Shape -> Shape
moveTo p (Circle _ r) = Circle p r
moveTo p@(Point x0 y0) (Rectangle (Point x1 y1) (Point x2 y2)) =

 Rectangle p $ Point (x0 + x2 - x1) (y0 + y2 - y1)

origin :: Point
origin = Point 0 0

originCircle :: Float -> Shape
originCircle = Circle origin −− function in "point-free style"

originRect :: Float -> Float -> Shape
originRect x y = Rectangle origin (Point x y)

Prelude> :l Shapes
[1 of 1] Compiling Shapes (Shapes.hs, interpreted)
Ok, one module loaded.

*Shapes> moveTo (Point 10 20) $ originCircle 5
Circle (Point 10.0 20.0) 5.0

*Shapes> moveTo (Point 10 20) $ Rectangle (Point 5 15) (Point 25 35)
Rectangle (Point 10.0 20.0) (Point 30.0 40.0)

Parameterized Types: Maybe
A safe replacement for null pointers

data Maybe a = Nothing | Just a

The Maybe type constructor is a function with a type parameter (a) that
returns a type (Maybe a).

Prelude> :k Maybe
Maybe :: * -> *

Prelude> Just "your luck"
Just "your luck"
Prelude> :t Just "your luck"
Just "your luck" :: Maybe [Char]
Prelude> :t Nothing
Nothing :: Maybe a
Prelude> :t Just (10 :: Int)
Just (10 :: Int) :: Maybe Int

Maybe In Action
Useful when a function may “fail” and you don’t want to throw an exception

Prelude> :m + Data.List
Prelude Data.List> :t uncons
uncons :: [a] -> Maybe (a, [a])
Prelude Data.List> uncons [1,2,3]
Just (1,[2,3])
Prelude Data.List> uncons []
Nothing

Prelude Data.List> :t lookup
lookup :: Eq a => a -> [(a, b)] -> Maybe b
Prelude Data.List> lookup 5 [(1,2),(5,10)]
Just 10
Prelude Data.List> lookup 6 [(1,2),(5,10)]
Nothing

Data.Map: Multiple Type Parameters

Prelude Data.Map> :k Map
Map :: * -> * -> *

Prelude Data.Map> :t empty
empty :: Map k a

Prelude Data.Map> :t singleton (1::Int) "one"
singleton (1::Int) "one" :: Map Int [Char]

Note: while you can add type class constraints to type constructors, e.g.,

data Ord k => Map k v = ...

it’s bad form to do so. By convention, to reduce verbosity, only functions that
actually rely on the type classes are given such constraints.

The type Keyword: Introduce an Alias
Prelude> type AssocList k v = [(k, v)]
Prelude> :k AssocList
AssocList :: * -> * -> *
Prelude> :{
Prelude| lookup :: Eq k => k -> AssocList k v -> Maybe v
Prelude| lookup _ [] = Nothing
Prelude| lookup k ((x,v):xs) | x == k = Just v
Prelude| | otherwise = lookup k xs
Prelude| :}
Prelude> :t lookup
lookup :: Eq k => k -> AssocList k v -> Maybe v
Prelude> lookup 2 [(1,"one"),(2,"two")]
Just "two"
Prelude> lookup 0 [(1,"one"),(2,"two")]
Nothing
Prelude> :t [(1,"one"),(2,"two")]
[(1,"one"),(2,"two")] :: Num a => [(a, [Char])]

Either: Funky Type Constructor Fun

data Either a b = Left a | Right b
 deriving (Eq, Ord, Read, Show)

Prelude> :k Either
Either :: * -> * -> *
Prelude> Right 20
Right 20
Prelude> Left "Stephen"
Left "Stephen"
Prelude> :t Right "Stephen"
Right "Stephen" :: Either a [Char] −− Only second type inferred
Prelude> :t Left True
Left True :: Either Bool b
Prelude> :k Either Bool
Either Bool :: * -> *

Either: Often a more verbose Maybe

By convention, Left = “failure,” Right = “success”

Prelude> type AssocList k v = [(k,v)]
Prelude> :{
Prelude| lookup :: String -> AssocList String a -> Either String a
Prelude| lookup k [] = Left $ "Could not find " ++ k
Prelude| lookup k ((x,v):xs) | x == k = Right v
Prelude| | otherwise = lookup k xs
Prelude| :}
Prelude> lookup "Stephen" [("Douglas",42),("Don",0)]
Left "Could not find Stephen"
Prelude> lookup "Douglas" [("Douglas",42),("Don",0)]
Right 42

data List a = Cons a (List a) −− A recursive type
 | Nil
 deriving (Eq, Ord, Show, Read)

*Main> :t Nil
Nil :: List a −− Nil is polymorphic
*Main> :t Cons
Cons :: a -> List a -> List a −− Cons is polymorphic
*Main> :k List
List :: * -> * −− Type constructor takes an argument
*Main> Nil
Nil

*Main> 5 ̀ Cons` Nil
Cons 5 Nil

*Main> 4 ̀ Cons` (5 ̀ Cons` Nil)
Cons 4 (Cons 5 Nil)

*Main> :t 'a' ̀ Cons` Nil
'a' ̀ Cons` Nil :: List Char −− Proper type inferred

Lists of Our Own with User-Defined Operators

infixr 5 :.
data List a = a :. List a

 | Nil
 deriving (Eq, Ord, Show, Read)

Haskell symbols are ! # $ % & * + . / < = > ? @ \ ^ | - ~

A (user-defined) operator is a symbol followed by zero or more symbols or :

A (user-defined) constructor is a : followed by one or more symbols or :

*Main> (1 :. 2 :. 3 :. Nil) :: List Int
1 :. (2 :. (3 :. Nil))

*Main> :t (:.)
(:.) :: a -> List a -> List a

Fixity of Standard Prelude Operators
infixr 9 ., !! −− Highest precedence
infixr 8 ̂ , ̂ ^, ** −− Right-associative
infixl 7 *, /, ̀ quot`, ̀ rem`, ̀ div`, ̀ mod`
infixl 6 +, - −− Left-associative
infixr 5 :, ++ −− : is the only builtin
infix 4 ==, /=, <, <=, >=, >, ̀ elem` −− Non-associative
infixr 3 &&
infixr 2 ||
infixl 1 >>, >>=
infixr 1 =<<
infixr 0 $, $!, ̀ seq` −− Lowest precedence

*Main> (1::Int) == 2 == 3
<interactive>:9:1: error:

 Precedence parsing error
 cannot mix '==' [infix 4] and '==' [infix 4] in the
 same infix expression

The List Concatenation Operator

infixr 5 ++. −− Define operator precedence & associativity
(++.) :: List a -> List a -> List a
Nil ++. ys = ys
(x :. xs) ++. ys = x :. (xs ++. ys)

*Main> (1 :. 2 :. 3 :. Nil ++. 4 :. 5:. Nil) :: List Int
1 :. (2 :. (3 :. (4 :. (5 :. Nil))))

The only thing special about lists in Haskell is the [,] syntax

*Main> :k List
List :: * -> *
*Main> :k []
[] :: * -> *

Our List type constructor has the same kind as the built-in list constructor []

data Tree a = Node a (Tree a) (Tree a) −− Unbalanced binary tree
 | Nil
 deriving (Eq, Show, Read)

singleton :: a -> Tree a
singleton x = Node x Nil Nil

insert :: Ord a => a -> Tree a -> Tree a
insert x Nil = singleton x
insert x n@(Node a left right) = case compare x a of

 LT -> Node a (insert x left) right
 GT -> Node a left (insert x right)
 EQ -> n

fromList :: Ord a => [a] -> Tree a
fromList = foldr insert Nil

toList :: Tree a -> [a]
toList Nil = []
toList (Node a l r) = toList l ++ [a] ++ toList r

member :: Ord a => a -> Tree a -> Bool
member _ Nil = False
member x (Node a left right) = case compare x a of

 LT -> member x left
 GT -> member x right
 EQ -> True

*Main> t = fromList ([8,6,4,1,7,3,5] :: [Int])

*Main> t
Node 5 (Node 3 (Node 1 Nil Nil) (Node 4 Nil Nil))

 (Node 7 (Node 6 Nil Nil) (Node 8 Nil Nil))

*Main> toList t
[1,3,4,5,6,7,8]

*Main> 1 ̀ member` t
True

*Main> 42 ̀ member` t
False

Specifying and Implementing Type Classes
class Eq a where −− Standard Prelude definition of Eq

 (==), (/=) :: a -> a -> Bool −− The class: names & signatures
 x /= y = not (x == y) −− Default implementations
 x == y = not (x /= y)

data TrafficLight = Red | Yellow | Green

instance Eq TrafficLight where
 Red == Red = True −− Suffices to only supply
 Green == Green = True −− an implementation of ==
 Yellow == Yellow = True
 _ == _ = False −− "deriving Eq" would have been easier

*Main> Red == Red
True −− Uses TrafficLight defintion of ==
*Main> Red /= Yellow
True −− Relies on default implementation

Implementing Show
instance Show TrafficLight where

 show Red = "Red Light"
 show Green = "Green Light"
 show Yellow = "Yellow Light"

*Main> show Yellow
"Yellow Light"

*Main> [Red, Yellow, Green]
[Red Light,Yellow Light,Green Light] −− GHCi uses show

*Main> :k Maybe
Maybe :: * -> * −− A polymorphic type constructor
*Main> :k Eq
Eq :: * -> Constraint −− Like a polymorphic type constructor
*Main> :k Eq TrafficLight
Eq TrafficLight :: Constraint −− Give it a type to make it happy

The MINIMAL Pragma: Controlling Compiler Warnings
infix 4 ==., /=.

class MyEq a where
 {−# MINIMAL (==.) | (/=.) #−}
 (==.), (/=.) :: a -> a -> Bool
 x /=. y = not (x ==. y)
 x ==. y = not (x /=. y)

instance MyEq Int where

instance MyEq Integer where
 x ==. y = (x ̀ compare` y) == EQ

The MINIMAL pragma tells the compiler
what to check for. Operators are , (and)
and | (or). Parentheses are allowed.

Prelude> :load myeq
[1 of 1] Compiling Main

myeq.hs:9:10: warning:
 [-Wmissing-methods]
 * No explicit implementation for
 either '==.' or '/=.'
 * In the instance declaration
 for 'MyEq Int'
 |

9 | instance MyEq Int where
 | ̂ ^^^^^^^

Eq (Maybe t)

data Maybe t = Just t | Nothing

instance Eq t => Eq (Maybe t) where
 Just x == Just y = x == y −− This comparison requires Eq t
 Nothing == Nothing = True
 _ == _ = False

The Standard Prelude includes this by just deriving Eq

*Main> :info Eq
class Eq a where

 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool
 {-# MINIMAL (==) | (/=) #-}
instance [safe] Eq TrafficLight
instance (Eq a, Eq b) => Eq (Either a b)
instance Eq a => Eq (Maybe a)
instance Eq a => Eq [a]
instance Eq Ordering
instance Eq Int
instance Eq Float
instance Eq Double
instance Eq Char
instance Eq Bool
instance (Eq a, Eq b) => Eq (a, b)
instance (Eq a, Eq b, Eq c) => Eq (a, b, c)
instance (Eq a, Eq b, Eq c, Eq d) => Eq (a, b, c, d)

ToBool: Treat Other Things as Booleans
class ToBool a where

 toBool :: a -> Bool

instance ToBool Bool where
 toBool = id −− Identity function

instance ToBool Int where
 toBool 0 = False −− C-like semantics
 toBool _ = True

instance ToBool [a] where
 toBool [] = False −− JavaScript, python semantics
 toBool _ = True

instance ToBool (Maybe a) where
 toBool (Just _) = True
 toBool Nothing = False

Now We Can toBool Bools, Ints, Lists, and Maybes
*Main> :t toBool
toBool :: ToBool a => a -> Bool

*Main> toBool True
True

*Main> toBool (1 :: Int)
True

*Main> toBool "dumb"
True

*Main> toBool []
False

*Main> toBool [False]
True

*Main> toBool $ Just False
True

*Main> toBool Nothing
False

The Functor Type Class: Should be “Mappable”†
class Functor f where

 fmap :: (a -> b) -> f a -> f b
 (<$) :: b -> f a -> f b
 m <$ b = fmap (_ -> b)

If f :: a -> b,

bs = fmap f as

applies f to every a in as to give bs; bs
= as <$ x replaces every a in as with x.

Here, f is a type constructor that takes
an argument, like Maybe or List

Prelude> :k Functor
Functor :: (* -> *) -> Constraint

† “Functor” is from Category Theory

class Functor (f :: * -> *) where
 fmap :: (a -> b) -> f a -> f b
 (<$) :: a -> f b -> f a
 {−# MINIMAL fmap #−}
instance Functor (Either a)
instance Functor []
instance Functor Maybe
instance Functor IO
instance Functor ((->) r)
instance Functor ((,) a)
−− Many others; these are
−− just the Prelude’s

Functor Instances for * -> * Kinds
data [] a = [] | a : [a] −− The List type: not legal syntax

instance Functor [] where −− Prelude definition
 fmap = map −− The canonical example

data Maybe t = Nothing | Just t −− Prelude definition

instance Functor Maybe where
 fmap _ Nothing = Nothing −− No object a here
 fmap f (Just a) = Just (f a) −− Apply f to the object in Just a

data Tree a = Node a (Tree a) (Tree a) | Nil −− Our binary tree

instance Functor Tree where
 fmap f Nil = Nil
 fmap f (Node a lt rt) = Node (f a) (fmap f lt) (fmap f rt)

Functor Either a

data Either a b = Left a | Right b

instance Either does not type check because Either :: * -> * -> *

The Prelude definition of fmap only modifies Right

instance Functor (Either a) where
 fmap _ (Left x) = Left x
 fmap f (Right y) = Right (f y)

This works because Either a :: * -> * has the right kind

Kinds: The Types of Types
Prelude> :k Int
Int :: * −− A concrete type
Prelude> :k [Int]
[Int] :: * −− A specific type of list: also concrete
Prelude> :k []
[] :: * -> * −− The list type constructor takes a parameter
Prelude> :k Maybe
Maybe :: * -> * −− Maybe also takes a type as a parameter
Prelude> :k Maybe Int
Maybe Int :: * −− Specifying the parameter makes it concrete
Prelude> :k Either
Either :: * -> * -> * −− Either takes two type parameters
Prelude> :k Either String
Either String :: * -> * −− Partially applying Either is OK
Prelude> :k (,)
(,) :: * -> * -> * −− The pair (tuple) constructor takes two

Crazy Kinds
Prelude> class Tofu t where tofu :: j a -> t a j

Type class Tofu expects a single type argument t

j must take an argument a and produce a concrete type, so j :: * -> *

t must take arguments a and j, so t :: * -> (* -> *) -> *

Prelude> :k Tofu
Tofu :: (* -> (* -> *) -> *) -> Constraint

Let’s invent a type constructor of kind * -> (* -> *) -> *. It has to take two
type arguments; the second needs to be a function of one argument

data What a b = What (b a) deriving Show

Prelude> :k What
What :: * -> (* -> *) -> * −− Success

What?
data What a b = What (b a) deriving Show

Prelude> :t What "Hello"
What "Hello" :: What Char []
Prelude> :t What (Just "Ever")
What (Just "Ever") :: What [Char] Maybe

What holds any type that is a “parameterized container,” what Tofu wants:

Prelude> :k What
What :: * -> (* -> *) -> *
Prelude> :k Tofu
Tofu :: (* -> (* -> *) -> *) -> Constraint
Prelude> instance Tofu What where tofu x = What x
Prelude> tofu (Just 'a') :: What Char Maybe
What (Just 'a')
Prelude> tofu "Hello" :: What Char []
What "Hello"

Prelude> data Barry t k a = Barry a (t k)
Prelude> :k Barry
Barry :: (* -> *) -> * -> * -> * −− Bizarre kind, by design
Prelude> :t Barry (5::Int) "Hello"
Barry (5::Int) "Hello" :: Barry [] Char Int

A Barry is two objects: any type and one built from a type constructor
Prelude> :k Functor
Functor :: (* -> *) -> Constraint −− Takes a one−arg constructor

instance Functor (Barry t k) where −− Partially applying Barry
 fmap f (Barry x y) = Barry (f x) y −− Applying f to first object

Prelude> fmap (+1) (Barry 5 "Hello")
Barry 6 "Hello" −− It works!
Prelude> fmap show (Barry 42 "Hello")
Barry "42" "Hello"
Prelude> :t fmap show (Barry 42 "Hello")
fmap show (Barry 42 "Hello") :: Barry [] Char String

class Eq a where
 (==), (/=) :: a -> a -> Bool

class Eq a => Ord a where
 compare :: a -> a -> Ordering
 (<), (<=), (>), (>=) :: a -> a -> Bool
 min, max :: a -> a -> a

class Num a where
 (+), (-), (*) :: a -> a -> a
 negate, abs, signum :: a -> a
 fromInteger :: Integer -> a

class (Num a, Ord a) => Real a where
 toRational :: a -> Rational

class Enum a where
 succ, pred :: a -> a
 toEnum :: Int -> a
 fromEnum :: a -> Int
 ...

Integral Typeclasses and Conversion

class (Real a, Enum a) => Integral a where
 quot, rem, div, mod :: a -> a -> a
 quotRem, divMod :: a -> a -> (a, a)
 toInteger :: a -> Integer

instance Integral Int
instance Integral Word
instance Integral Integer

Conversion among Integrals:

fromIntegral :: (Integral a, Num b) => a -> b
fromIntegral = fromInteger . toInteger

RealFrac Typeclasses and Conversion
class Num a => Fractional a where

 (/) :: a -> a -> a
 recip :: a -> a
 fromRational :: Rational -> a

class (Real a, Fractional a) => RealFrac a where
 properFraction :: Integral b => a -> (b, a)
 truncate, round, ceiling, floor :: Integral b => a -> b

Conversions among Reals and Fractionals:
realToFrac :: (Real a, Fractional b) => a -> b
realToFrac = fromRational . toRational

instance RealFrac Float
instance RealFrac Double

type Rational = GHC.Real.Ratio Integer

Conversion Examples

Prelude> :t 42
42 :: Num p => p
Prelude> :t 42.0
42.0 :: Fractional p => p

Prelude> (fromIntegral (42 :: Int)) :: Word
42
Prelude> (realToFrac (42 :: Int)) :: Double
42.0
Prelude> (realToFrac (42.5 :: Float)) :: Double
42.5
Prelude> (floor (42.5 :: Double)) :: Int
42

https://wiki.haskell.org/Converting_numbers

https://wiki.haskell.org/Converting_numbers

	Basic Haskell Types
	Function Types
	Polymorphism and Type Variables
	Typeclasses
	Patterns
	Algebraic Data Types
	Parameterized Types: Maybe
	The type keyword
	The Either Type
	Lists as an Algebraic Data Type
	Specifying and Implementing Type Classes
	The Functor Type Class
	Kinds: The Type of Types
	Numeric Conversions

