
Parallelized Traffic Simulation

Denzel Farmer (df2817) Andrew Yang (asy2130)

Fall 2023

1 Introduction

A nearly universal experience as a driver is getting stuck in traffic. Congested highways often slow
to a near stand-still while advertising speed limits of 60-80 mph. These bottlenecks can appear
for seemingly no reason, and can prove highly frustrating to students returning from a relaxing
Thanksgiving vacation.

With this in mind, we created a highway traffic simulator, which we used to simulate the flow
of traffic on a highway, as well as including random events to make the simulation more dynamic.
By taking advantage of existing driver behavior models, specifically the Intelligent Driver Model
(IDM), we were able to construct a highly parallelized to allow fast simulation of scenarios involving
thousands of vehicles across hundreds of lanes.

2 Objective

Our goal was to build a highly parallelizable traffic simulator, to observe the flow of highway traffic
as it changes over some time period, based on configurable parameters.

We decided to simulate highway traffic microscopically, considering the behavior of each indi-
vidual driver based on models meant to emulate human behavior. Based on this simulation, we
were also able to observe how traffic flow responds to random stimuli (for example, a car briefly
slowing down to avoid an obstacle) like in the real world.

We also had an idea of implementing lane changes between lanes, which would allow cars to
switch between lanes. However, as discussed later, the performance of our implementation was
highly inefficient and did not work well with our parallelized design, since it involved both time
intensive sequential operations for each car in each lane (such as sorting) as well as broke the
independence between lanes that had allowed for the speed up.

3 Implementation

We first constructed a sequential implementation of the simulator, using structures that would later
be conducive to parallelization. Then, we expanded that implementation to include parallelization.

We split the application into a few distinct parts: code to read and parse configuration param-
eters, a generic simulation framework, traffic-specific data structures and operations, and code to
render the output itself. Of these, we focused most of our development on the traffic modeling code

1

rather than optimizing other, less important components (like reading configuration or writing to
disk).

3.1 Main Runner

The main runner code in Main.hs is responsible for all the IO code in our application. It performs
argument and config parsing, evaluates the simulation result, and writes the output to a file.

To run a simulation, our code required a variety of parameters, both from the command line
and from a JSON configuration file. We used the optparse-applicative library to read in the
following arguments:

traffic-sim-exe (-c|--config FILENAME) (-o|--outputfile FILENAME)

[-n|--iterations INT] [-x|--no-output BOOL]

The required arguments are a JSON configuration filepath to read further parameters and an output
filepath for outputting the simulation result. We also include optional parameter no-output, which
we use for certain evaluation runs; when set to true, the bulk of time-consuming simulation output
generation is disabled (although we ensure that all components are still evaluated fully, confirmed
with profiling).

A function parseConfigFile :: String -> IO SimConfig in Config.h reads the provided
config file from disk and uses the aeson package to parse the result into a SimConfig object, which
contains other configuration objects used by the simulator. This requires slightly ugly ’parsable’
wrappers around various configuration objects, but since elegant configuration parsing wasn’t our
main goal, it works for our purposes.

With a configuration object, the main runner evaluates the pure simulation function runSimLoop

:: SimArgs -> SimConfig -> SimResult defined in Sim.h and writes the output result to the
provided output file.

3.2 Generic Simulation Structure

To evaluate the result of a simulation, we use the runSimLoop function. This function (and the
Sim.h code in general) is mostly agnostic to the details of the simulation, and instead operates on
Scene objects.

The simulation function lazily defines a ’generator’ list using the following function:

bu i ldByteResu l t : : Scene −>
(Scene −> (Scene , B. ByteStr ing)) −>
[B. ByteStr ing]

This helper is similar to the iterate function, and generates an infinite list of bytestrings rep-
resenting the simulation result at each timestep using a provided update function. The simulation
runner code passes a partially applied updateScene function, which takes in a current Scene of the
simulation and generates a tuple containing the next Scene object and a bytestring describing the
current scene.

We found experimentally that generating bytestring intermediate results with each update was
significantly more efficient than our first naive solution, accumulating and converting a list of Scene
objects (although both have significant disadvantages compared to a more standard streaming
approach).

2

After taking the requested number of bytestrings from the generator, runSimLoop wraps the
result in a SimResult and returns it.

3.3 Traffic Modeling Structure

To implement the traffic simulation model, we use a few data key data structures: Scene, Lane, and
Car. Each is implemented in its own .hs file, and they have related configuration objects defining
their static configuration.

3.3.1 Scene

The Scene object and its related configuration objects are the interface between the previously
described simulation code and the traffic simulation model. A Scene represents the state of the
entire simulation at a single timestep, and consists of a list of Lane objects.

The most important function operating on the Scene data is updateScene:

updateScene : : SceneConf ig −>
SpawnerConfig −> Bool −> Scene −>
(Scene , B. ByteStr ing)

This function takes in a Scene (along with configurations) and computes both the next scene
in the simulation, and the bytestring representation of the current string. To do this, it maps the
updateLane function over the contained list of Lane objects, and merges the results.

In the lane-parallelized version of our code, we use the following ParMap rather than a simple
map:

(nextLanes , currLaneBytes) = unzip $ parMap
rdeepseq updateLaneFunc currLanes

This computes the update for each lane in parallel by fully evaluating the result of the updateLaneFunc
function.

In our prototypes which implemented lane-switching, updating a scene also included a pass over
the lanes which performed switching calculations.

3.3.2 Lane

A Lane object contains an ordered list of Car objects, and represents the current state of a single
lane of traffic at a single time step:

data Lane = Lane {
lnCars : : [Car] ,
lnStep : : Int ,
lnMaxCarId : : Int ,
lnSeed : : Int ,
lnID : : Int

} deriving (Show, Generic , NFData)

In addition to the list of cars, each Lane includes the current simulation step, the maximum ID
assigned to any Car object (since car IDs are per-lane), a random seed, and a numeric identifier.

3

As with the Scene object, there is an updateLane function, which takes in configuration pa-
rameters and a current Lane and outputs the next lane and the byte representation of the current
lane:

updateLane : : Bool −> SceneConf ig −>
SpawnerConfig −> Lane −>
(Lane , B. ByteStr ing)

Updating a lane involves a filtering away cars which have passed beyond the maximum boundary,
potentially spawning a new car based on the spawnRate parameter, and updating the acceleration,
velocity, and position of each car (based on its current state and that state of the car immediately
in front of it). Each of these actions is handled by a separate helper function.

In the chunk-parallelized implementation, we perform a bit more work, splitting the car list into
chunks with the generateChunks function. We then perform a ParMap over those chunks with the
processChunks helper, which does the following:

cRes = parMap rdeepseq (processChunk nDisp dT) chunks
(cars , by t eS t r ing s) = unzip chunkResults

3.3.3 Car

The most important data structure is the Car itself. Each car has a car ID, which is important for
pairing each car with a consistent color within the Python rendering script.

To store the physical motion attributes, each car contains a position, velocity and acceleration
Float value. Each car also keeps track of its desired speed, which is important for making the car
enforce a current speed, especially if it is at the head of the line and could theoretically accelerate
forever. This is also important for realism, as cars in the real world clearly cannot accelerate
forever. Cars also have a maximum deceleration and acceleration, to simulate real world conditions,
considering that cars cannot halt immediately nor can they accelerate at an infinite rate.

Each car has a minimum gap parameter that serves as the minimum permissible gap between
a car and its immediate neighbor. Each car also has a desired time gap between itself and the car
preceding it, which is represented as a time instead of a physical gap because the gap increases
when speed increases, just like in the real world.

data Car = Car
{ cID : : Int ,

cPos : : Float ,
cVel : : Float ,
cAcce l : : Float ,
cDes iredSpeed : : Float ,
cMinGap : : Float ,
cDesiredTimeGap : : Float ,
cMaxDecel : : Float ,
cMaxAccel : : Float

} deriving (Generic , NFData , Show)

There are two main update functions that act on the Car object. The updateCarAccel function
performs the IDM/ACC acceleration calculation described in the next section, determining how a
particular car reacts based on its state and the state of its leading car (or a dummy car, if it has no

4

leader). The updateCarPosVel applies simple equations of motion to update a single car’s position
based on its velocity and velocity based on its acceleration.

3.3.4 Driver-Model Algorithm

We used a car-following driver model that takes in position and speed information about a car and
the car directly in front of it, and decides how much to accelerate/decelerate at each time step to
maintain a safe following distance.

In particular, we implemented the Intelligent Driver Model described in chapter 11 of Traffic
Flow Dynamics [1].

This model describes driver behavior as a choice of acceleration based on the following equation:

dv

dt
= a

[
1 −

(
v

v0

)4

−
(
s∗(v,∆ v)

s

)2
]

(1)

The first term in this equation, 1 −
(

v
v0

)4

, represents the fraction of maximum acceleration a

a driver would choose if there were no leading car, based on the car’s current velocity v and the
driver’s desired velocity v0.

The second term takes into consideration the car directly in front, and represents ’breaking’ the
driver does in response to a leading car. This calculated with a ratio of the actual gap s and the
’desired’ gap s∗. The desired gap is calculated as follows:

s∗ = s0 + max

[
0, 1 −

(
vT +

v∆v

2
√

2ab

)]
(2)

This is based on the driver’s minimum acceptable stopped gap s0, the current velocity v, the
driver’s desired time gap T , the difference between the current car’s velocity and the velocity of the
leading car ∆v, the maximum acceleration a, and the maximum deceleration b.

To implement this model, for each simulation step we recalculate the desired acceleration for each
car at time t based on its state, its leader’s state, and that car’s ’profile’ of the constant parameters
a, v0, s0, T and b. Then, we recalculate position and velocity for the next timestep t+ ∆t assuming
constant acceleration over the time step. If the calculated velocity would be negative, we coerce it
to 0.

3.3.5 Configuration Parameters

To configure the application, we allow a number of configuration parameters. These are passed in
JSON format, and affect how the simulation proceeds. In particular, these include:

• simSceneConfig: a JSON object configuring the initial scene

– Max Position: the boundary position (in meters) after which cars will despawn

– Step Time (s): the duration of time in each time step when updating position/velocity

– Lanes: the number of lanes in the scene

– Initial Car Count: the number of cars to begin with (evenly spaced from 0 to boundary)

– Initial Car Config: JSON object describing the driver profile for initial cars (contents
not shown)

5

• simSpawnerConfig: a JSON object configuring the continous car spawner

– Random Seed: a seed to randomize driver profile choice

– Spawn Rate (steps): the number of steps in between spawning new cars

– Spawn Speed (m/s): the speed at which spawned cars should start

– Config Frequencies: a list of floats of the same length as Car Configs, providing a weight
to use when randomly selecting driver profiles

– Car Configs: a list of JSON objects describing the possible driver configurations to
randomly select from when spawning a new car

Each car configuration contains the components of the driver profile described in the previous
section:

• Desired Speed (m/s)

• Minimum Gap (m)

• Desired Time Gap (s)

• Max Deceleration (m/s2)

• Max Acceleration (m/s2)

3.4 Rendering

We were able to evaluate that our simulation worked through visualizing our output file using a
Python script that took line separated JSON formatted values that represented each ”timestamp.”
We were then able to generate static images for each frame, before stitching them together into an
MP4 video. We were able to verify that our code met our expected output, as we were able to see
the cars move across the screen evenly, as well as see the random variation in acceleration that we
generated.

The Python script works by accepting a header line that contains important information about
the configuration, such as the number of iterations, number of lanes, and a bound on the x-axis so
that the renderer knows what the scale should be.

Using the number of iterations read through the header, it reads through that many lines. At
each stage, it draws a rectangle onto the canvas, using the interpolated x and y position calculated
from the Car data it read in as well as using the lane it is in.

4 Parallelization

Our approach towards parallelization underwent several iterations, starting with a ”naive” ap-
proach that parallelized every single operation, then parallelizing chunks of operations that would
be calculated sequentially, before eventually parallelizing computation across multiple lanes that
are functionally independent.

6

4.1 No Chunks

In our first iteration, we did not have any chunks at all, to see if there would be any speedup. For
this, we paired every single car with the car in front of it, placed those in a list, and then called
parMap on the list, using the rdeepseq strategy, and using our acceleration, velocity, and position
functions on each pair, which would return a list of the first cars in each pair.

We were able to see that not having any chunks had a negative effect on our computation
speed. Given that the individual kinematic equations were comprised of a small number of simple
arithmetical calculations, it made sense that the overhead of creating and executing each thread
dominated the time spent calculating the equations themselves. As a result, we decided to follow a
chunking approach in order to ensure that the time spent on overhead was not wasteful.

4.2 Chunking

In our next iteration, we implemented a chunking algorithm that split the original list of cars into
chunks of any arbitrary size. However, because of the reliance on consecutive cars in order to
calculate our motion equations, simply partitioning the list would not work. Specifically, the last
car in every chunk would not be able to calculate its acceleration on its immediate predecessor,
which would lead it to accelerate as if there was no vehicle in front of it. To remediate this, we
had to create new chunks of length two that would account for the boundary between the n sized
chunks.

After testing this however, we realized that the unevenly sized chunks were not conducive for
effective parallelization, as it could be possible for a huge variation in chunk size (for example the
chunks of size 2 could be computing alongside chunks of size 1000) which subsequently resulted in
dramatic imbalances in the operations that each core was calculating this.

To remedy this, we restructured the chunking algorithm such that every chunk would be the
same size. We were able to do this by having a one element overlap between each chunk, meaning
that every car would have a proper calculation. We would then drop the calculated value from each
chunk, since it would consider the last value as having no predecessor, which is not true.

4.3 Lane Parallelization

Beyond this, we looked beyond processing a single lane in a parallel fashion. This matches well
with the real world, since in most situations, a single highway will have multiple lanes of traffic
going at once. In addition, since we did not implement any lane changes, the individual lanes are
functionally independent, a prime opportunity for parallelism.

To do this, we called parMap on a list of lanes. In our implementation, it was expected that
each lane would have a roughly equal amount of cars in the scene at all times, as we set a fixed
rate for spawning cars between all lanes, and each lane started with the same number of cars. In
theory, since cars have the ability to stop/slow down randomly, it could be possible over time that
each lane would have drastically differing lengths. However, in our testing, the number of cars in
each lane was about the same.

At this scale, with potentially hundreds if not thousands of cars per lane, and a theoretically
unbounded number of lanes, the power of parallelization became especially apparent. The issues
that we had initially with regards to calculations that were too fast were addressed, as the time
needed per calculation became larger on several orders of magnitude in cases where large numbers
of cars would be present in each lane at once. This meant that the overhead that was initially

7

a waste of time was a relatively small amount of time compared to the time spent on actually
”productive” calculations.

4.4 Combination Approach

Ultimately, we found that a combination of chunking and parallelization between lanes yielded the
best speed up in our use case. This was because the amount of operations needed to calculate the
values for each lane had grown large enough that it made sense to sacrifice a bit of computation
time generating chunks in order to be able to calculate the list values more effectively.

4.5 Limitations

As is the case for most parallel programs, we were restricted by Amdahl’s Law, which meant that
any improvement in the parallel calculations would not be able to speed up the inevitable sequential
portions. Fortunately, the sequential operations in our program were not extremely time intensive,
although they took a non-negligible amount of time.

The sequential part of our code was mainly limited to constant time operations, with the ex-
ception of generating chunks, which was necessarily an O(n) operation.

Another limitation was the fact that our timesteps needed to be synced. As a result, if any chunk
had finished computing earlier than the others, it would need to wait. However, given the even
sized chunks and theoretically consistent calculation time needed for each chunk to be processed,
we expect that this was not a signficant limitation.

When writing mode was enabled, there was also a significant amount of sequential time spent
writing to disk, which is why we allowed the user to turn that off in order to benchmark actual
parallel code.

5 Evaluation

We ended up evaluating our code by comparing our multithreaded version with the single threaded
version. Our test machine for this project was a M1 MacBook Pro, with 8 cores, 8 threads, and 16
GB of RAM.

We appended the GNU ”time” command at the front of every executions, and used the provided
time as the source of truth for our comparisons.

6 Results

In the following chart, we can see how the speedup peaks when 4 cores are used, but is slower with
larger and smaller numbers of cores.

8

Figure 1: Speedup vs. Core Count over 50 iterations, 10,000 initial cars, 10,000 max scene size

Below, we can see that as we increase the chunk size to approach the number of cars, the total
computation time continues to approach 10 seconds. With small chunk sizes, the time elapsed
gets significantly larger, which makes sense as the overhead to computation speedup ratio gets
exceptionally high with small chunk sizes.

Figure 2: Time vs. Chunk Size over 50 iterations, 10,000 initial cars, 10,000 max scene size

9

When comparing four cores vs one core, we see that at lower values, the amount of speedup
with the parallel approach is slightly lower than when it is at higher values. However, the factor
differential is still relatively stable.

Figure 3: Time vs. Car Count over 50 iterations, 10,000 initial cars, 100,000 max scene size

6.1 Future Improvements

6.2 Lane Switching

While we made a few prototypes which implemented basic lane switching, their sequential per-
formance penalty was too high for reasonable use. We believe this is due to our choice of data
structure representing a lane, and as such could be improved significantly.

Doing so would have significant implications for parallelism, because it would create computa-
tionally intensive tasks that must be completed in sequence after each step calculation.

6.2.1 Streaming-Based Output

As it currently stands, we build up bytestring in memory and write to disk at the end. However,
this means that it takes a significant amount of sequential computation at the end of execution. To
make this sequential work faster, one idea we had was to interleave the writing to the file with the
actual computation of each timestamp. To do this, a possible solution could be to use a streaming
package to stream to disk during the computation process. Another potential alternative is to
reduce the frequency of writes by only recording values periodically instead of every time stamp.
However, this could cause issues with the rendering of the MP4 as frames would necessarily be
dropped.

10

References

[1] Treiber, Martin, et al. “Chapter 11: Car-Following Models Based on Driving Strategies.” Traffic
Flow Dynamics: Data, Models and Simulation, Springer, Berlin, 2013.

[2] Kesting, Arne, et al. “General Lane-changing model Mobil for car-following models.” Trans-
portation Research Record: Journal of the Transportation Research Board, vol. 1999, no. 1,
2007, pp. 86–94, https://doi.org/10.3141/1999-10.

[3] https://github.com/movsim/traffic-simulation-de/tree/master

11

7 Source Code

7.1 Main.hs

module Main (main) where

import Config (par seCon f i gF i l e ,
SimConfig)

import Sim (runSimLoop , simResultToByteString , SimArgs (. .))

import quali f ied Data . ByteStr ing as B
import quali f ied Data . ByteStr ing . Char8 as BSC

import System . Exit (exitFailure)
import Control . Exception (catch , IOException)
import Options . App l i ca t i v e (Parser , strOption , long , short , metavar , help ,

option , auto , showDefault , value , execParser ,
in fo , (<∗∗>) , he lper , f u l lDe sc , progDesc , header)

data Traf f i cS imArgs = Traf f i cS imArgs
{ c o n f i g F i l e : : String ,

ou tF i l e : : String ,
numIterat ions : : Int ,
tsNoDisplay : : Bool

} deriving Show

arguments : : Parser Traf f i cS imArgs
arguments = Traf f i cS imArgs
<$> strOpt ion

(long ” c o n f i g ”
<> shor t ’ c ’
<> metavar ”FILENAME”
<> help ”Path to the c o n f i g u r a t i o n f i l e ”

)
<∗> strOpt ion

(long ” o u t p u t f i l e ”
<> shor t ’ o ’
<> metavar ”FILENAME”
<> help ”Path to p lace output f i l e ”

)
<∗> opt ion auto

(long ” i t e r a t i o n s ”
<> shor t ’n ’
<> metavar ”INT”
<> help ”Number o f i t e r a t i o n s to run the s imu la tor ”
<> showDefault
<> value 10 −− Defau l t to 10 i t e r a t i o n s

)
<∗> opt ion auto

(
long ”no−output ”
<> shor t ’ x ’
<> metavar ”BOOL”
<> help ”Don ’ t save output (f o r benchmarking) ”

12

<> showDefault
<> value False

)

main : : IO ()
main = runTraf f i cS im =<< execParser opts

where
opts = i n f o (arguments <∗∗> he lpe r)

(f u l l D e s c
<> progDesc ” T r a f f i c S imulator App l i ca t ion ”
<> header ” T r a f f i c S imulator − a t o o l f o r s imu la t ing t r a f f i c ”)

runTraf f i cS im : : Traf f i cS imArgs −> IO ()
runTraf f i cS im args

| numIterat ions args <= 0 = do
putStrLn ” Error : Number o f i t e r a t i o n s must be a p o s i t i v e i n t e g e r . ”
exitFailure

| otherwise = do
s imConfig <− pa r s eCon f i gF i l e (c o n f i g F i l e args) ‘ catch ‘ handleConf igParseError

l et simArgs = SimArgs {noDisplay = (tsNoDisplay args) ,
numIters = (numIterat ions args)}

l et s imResult = runSimLoop simArgs simConfig
l et s imResultBytes = simResultToByteStr ing s imResult
l et numStepBytes = BSC. pack (”{Steps = ” ++ (show (numIterat ions args)) ++ ”}”)

B. writeFile (ou tF i l e args) $ numStepBytes ‘BSC. append ‘ s imResultBytes

handleConf igParseError : : IOException −> IO SimConfig
handleConf igParseError e = do

putStrLn $ ” Error par s ing c o n f i g f i l e : ” ++ show e
exitFailure

13

7.2 Car.hs

{−# LANGUAGE DeriveGeneric , DeriveAnyClass #−}

module Car (Car (. .) , CarConfig (. .) , CarState (. .) , in i tCar , in i tCarState ,
moveCarStateForward , calcPos , ca lcVel , updateCarPosVel , carWithinBound ,
updateCarAccel , ca l cAcce l , ca l cFreeAcce l , ca l cBreak ingAcce l) where

import Control . P a r a l l e l . S t r a t e g i e s (NFData)
import GHC. Gener ics (Generic)
import quali f ied Data . ByteStr ing as B

data CarState = CarState
{

csPos : : Float ,
c sVel : : Float ,
csAcc : : Float

} deriving (Show, Eq)

−− I n i t i a l i z e a car s t a t e to the g iven po s i t i o n
−− with 0 a c c e l e r a t i o n and v e l o c i t y
i n i t C a r S t a t e : : Float −> Float −> CarState
i n i t C a r S t a t e pos ve l = CarState pos ve l 0

−− Constants f o r a s i n g l e car
data CarConfig = CarConfig

{
ccDes iredSpeed : : Float ,
ccMinGap : : Float ,
ccDesiredTimeGap : : Float ,
ccMaxDecel : : Float ,
ccMaxAccel : : Float

} deriving (Show, Eq)

data Car = Car
{ cID : : Int ,

cPos : : Float ,
cVel : : Float ,
cAcce l : : Float ,
cDes iredSpeed : : Float ,
cMinGap : : Float ,
cDesiredTimeGap : : Float ,
cMaxDecel : : Float ,
cMaxAccel : : Float

} deriving (Generic , NFData , Show)

i n i tCar : : Int −> CarConfig −> CarState −> Car
in i tCar carID carConf ig ca rSta te =

Car { cID = carID
, cPos = csPos ca rSta t e
, cVel = csVel ca rS ta t e
, cAcce l = csAcc ca rSta t e
, cDesiredSpeed = ccDes iredSpeed carConf ig
, cMinGap = ccMinGap carConf ig

14

, cDesiredTimeGap = ccDesiredTimeGap carConf ig
, cMaxDecel = ccMaxDecel carConf ig
, cMaxAccel = ccMaxAccel carConf ig
}

−− Allow s o r t i n g cars by l o c a t i o n i n i t i a l l y
instance Ord Car where

compare a b = compare (cPos a) (cPos b)

instance Eq Car where
a == b = cPos a == cPos b

moveCarStateForward : : Float −> CarState −> CarState
moveCarStateForward d i s t c a r s t a t e = c a r s t a t e { csPos = forwardPos}
where

forwardPos = (csPos c a r s t a t e) + d i s t

carWithinBound : : Float −> Car −> Bool
carWithinBound bound car = (cPos car) < bound

updateCarAccel : : Car −> Car −> Car
updateCarAccel car next = car { cAcce l = ca l cAcce l curV deltaV
curGap car }

where
curV = cVel car
deltaV = curV − (cVel next)
curGap = (cPos next) − (cPos car)

−− Ca l cu l a t e the ac t ua l a c c e l e r a t i o n chosen by the d r i v e r based on
cur rent speed , gap , de l ta−V, and c h a r a c t e r i s t i c s
ca l cAcce l : : Float −> Float −> Float −> Car −> Float
ca l cAcce l curV deltaV curGap car = maxAccel ∗ (freeDesAcc − break ingAcce l)
where

maxAccel = cMaxAccel car
freeDesAcc = ca l cFreeAcce l curV car
break ingAcce l = ca l cBreak ingAcce l curV deltaV curGap car

−− Ca l cu l a t e the ’ f r e e des i red ’ a c c e l e r a t i o n ; f r a c t i o n o f max the d r i v e r would a c c e l e r a t e
−− on an unobs t ruc ted road based on curren t speed and de s i r ed speed
ca l cFreeAcce l : : Float −> Car −> Float
ca l cFreeAcce l curV car = 1 − (curV/desV) ˆ (4 : : Int)
where

desV = cDesiredSpeed car

−− Ca l cu l a t e the ’ breaking ’ a c c e l e r a t i o n ; f r a c t i o n o f max a c c e l e r a t i o n d r i v e r doesn ’ t
−− use because they are g e t t i n g too c l o s e to the car in f r on t
ca l cBreak ingAcce l : : Float −> Float −> Float −> Car −> Float
ca l cBreak ingAcce l curV deltaV curGap car = (dynamicDesiredGap / curGap) ˆ (2 : : Int)
where

dynamicDesiredGap = (cMinGap car) + (max 0 (ownSpeedFac + relSpeedFac))
ownSpeedFac = curV ∗ (cDesiredTimeGap car)
re lSpeedFac = (curV ∗ deltaV) / ((2) ∗ (sqrt (maxAccel ∗ maxDecel)))
maxAccel = cMaxAccel car

15

maxDecel = cMaxDecel car

updateCarPosVel : : Float −> Car −> Car
updateCarPosVel deltaT car = car {cPos = (ca lcPos deltaT car) , cVel = (ca l cVe l deltaT car)}

ca lcPos : : Float −> Car −> Float
ca lcPos deltaT car = x + v∗deltaT + (0 . 5) ∗ (a)∗ (deltaT ˆ(2 : : Int))

where
x = cPos car
v = cVel car
a = cAcce l car

ca l cVe l : : Float −> Car −> Float
ca l cVe l deltaT car = max 0 (v + a∗deltaT)
where

v = cVel car
a = cAcce l car

16

7.3 Config.hs

{−# LANGUAGE DeriveGeneric #−}
{−# LANGUAGE Over loadedStr ings #−}

module Config (SimConfig (. .) ,
pa r s eCon f i gF i l e ,
getSceneConf ig ,
setSceneConf ig ,
getSpawnerConfig
) where

import Control . Exception (Exception , throwIO)

import Car (CarConfig (. .) , CarState (. .))
import Scene (SceneConf ig (. .) , SpawnerConfig (. .))

import GHC. Gener ics (Generic)
import Data . Aeson (FromJSON, decode , parseJSON , withObject , (. :))
import quali f ied Data . ByteStr ing . Lazy as B

−− ”Parsab le ” Wrapper t ype s to a l l ow JSON Parsing −−

−− Sta t e o f a s i n g l e car
newtype ParsCarState = ParsCarState {unwrapCarState : : CarState }

deriving (Show, Eq)

instance FromJSON ParsCarState where
parseJSON = withObject ”Car State ” $ \v −> fmap ParsCarState $ CarState

<$> v . : ” Pos i t i on ”
<∗> v . : ” Ve loc i ty ”
<∗> v . : ” Acce l e r a t i on ”

−− Base con f i g f o r a car
newtype ParsCarConfig = ParsCarConfig {unwrapCarConfig : : CarConfig}

deriving (Show, Eq)

instance FromJSON ParsCarConfig where
parseJSON = withObject ”Car Config ” $ \v −> fmap ParsCarConfig $ CarConfig

<$> v . : ” Des i red Speed (m/ s) ”
<∗> v . : ”Minimum Gap (m) ”
<∗> v . : ” Des i red Time Gap (s) ”
<∗> v . : ”Max Dece l e r a t i on (m/ s ˆ2) ”
<∗> v . : ”Max Acce l e r a t i on (m/ s ˆ2) ”

−− Car spawning con f i g u ra t i on
newtype ParsSpawnerConfig = ParsSpawnerConfig {unwrapSpawnerConfig : : SpawnerConfig}

deriving (Show, Eq)

instance FromJSON ParsSpawnerConfig where
parseJSON = withObject ”Spawner Config ” $ \v −> do

pRandomSeed <− v . : ”Random Seed”
pSpawnRate <− v . : ”Spawn Rate (s t ep s) ”
pSpawnSpeed <− v . : ”Spawn Speed (m/ s) ”
con f i gFreq s <− v . : ” Config Frequenc ie s ”

17

parsCarConf igs <− v . : ”Car Conf igs ”

l et carCon f i g s = map (unwrapCarConfig) parsCarConf igs

l et spawnerConfig = SpawnerConfig pRandomSeed pSpawnRate
pSpawnSpeed con f i gFreq s carCon f i g s

return $ ParsSpawnerConfig $ spawnerConfig

−− I n i t i a l scene con f gura t i on
newtype ParsSceneConf ig = ParsSceneConf ig { unwrapSceneConfig : : SceneConf ig }

deriving (Show, Eq)

instance FromJSON ParsSceneConf ig where
parseJSON = withObject ” I n i t i a l Scene ” $ \v −> do

pMaxPosition <− v . : ”Max Pos i t i on ”
pStepTime <− v . : ” Step Time (s) ”
pLanes <− v . : ”Lanes”
in i tCarCon f i g <− v . : ” I n i t i a l Car Conf ig ”
initCarCount <− v . : ” I n i t i a l Car Count”

l et carConf ig = unwrapCarConfig in i tCarCon f i g
l et sceneConf ig = SceneConf ig pMaxPosition pStepTime pLanes carConf ig initCarCount

return $ ParsSceneConf ig $ sceneConf ig

−− Overa l l s imu la t i on con f i g u r a t i on (no need f o r non−pa r sab l e ve r s i on)
data SimConfig = SimConfig {

s imSceneConfig : : ParsSceneConfig ,
simSpawnerConfig : : ParsSpawnerConfig

} deriving (Show, Eq, Generic)

instance FromJSON SimConfig

−− Set the SceneConfig a t t r i b u t e in a SimConfig
se tSceneConf ig : : SimConfig −> SceneConf ig −> SimConfig
se tSceneConf ig simConfig sceneConf ig = simConfig { s imSceneConfig = newParsScConfig}
where

newParsScConfig = ParsSceneConf ig sceneConf ig

−− Retr i eve the SceneConfig from a SimConfig
getSceneConf ig : : SimConfig −> SceneConf ig
getSceneConf ig s imConfig = unwrapSceneConfig $ s imSceneConfig s imConfig

−− Retr i eve the SpawnerConfig from a SimConfig
getSpawnerConfig : : SimConfig −> SpawnerConfig
getSpawnerConfig simConfig = unwrapSpawnerConfig $ simSpawnerConfig simConfig

data ParseError = ParseError String deriving (Show)
instance Exception ParseError

−− Parse the con f i g f i l e
pa r s eCon f i gF i l e : : String −> IO SimConfig

18

pa r s eCon f i gF i l e f i l e P a t h = do
f i l e C o n t e n t <− B. readFile f i l e P a t h
case decode f i l e C o n t e n t of

Just c o n f i g −> return c o n f i g
Nothing −> throwIO $ ParseError $ ” I n v a l i d JSON format in : ” ++ (show f i l e P a t h)

19

7.4 Scene.hs

{−# LANGUAGE DeriveGeneric , DeriveAnyClass #−}

module Scene (Scene , SceneConf ig (. .) , SpawnerConfig (. .) ,
generateChunks , updateScene ,
updateConsecPairsSkipLast , updateCarsChunk , i n i t S c e n e) where

import Car (Car (. .) , CarConfig (. .) , in i tCar , in i tCarSta te ,
updateCarPosVel , updateCarAccel , carWithinBound)

import Data . List (sort)
import Control . P a r a l l e l . S t r a t e g i e s (parMap , NFData , rdeepseq)
import GHC. Gener ics (Generic)
import quali f ied Data . ByteStr ing as B
import quali f ied Data . ByteStr ing . Char8 as BSC
import System .Random (randomR, mkStdGen)

−− Conf igura t ion f o r car spawner
data SpawnerConfig = SpawnerConfig {

spRandomSeed : : Int ,
spSpawnRate : : Int ,
spSpawnSpeed : : Float ,
spConf igFreqs : : [Float] ,
spCarConf igs : : [CarConfig]

} deriving (Show, Eq)

type SceneChunk = [Car]

−− Conf igura t ion f o r i n i t i a l scene cons t ruc t i on
data SceneConf ig = SceneConf ig {

scBound : : Float ,
scStepTime : : Float ,
scLanes : : Int ,
s c I n i t C o n f i g : : CarConfig ,
scInitCarCount : : Int
} deriving (Show, Eq)

−− Datatype r ep r e s en t i n g a lane o f cars processed up u n t i l a g i ven t imes t ep
data Lane = Lane {

lnCars : : [Car] ,
lnStep : : Int ,
lnMaxCarId : : Int , −− ID ’ s are per−l ane
lnSeed : : Int ,
lnID : : Int

} deriving (Show, Generic , NFData)

−− Datatype r ep r e s en t i n g the f u l l scene
data Scene = Scene {

sLanes : : [Lane]
} deriving (Show, Generic , NFData)

−− I n i t i a l i z e a lane wi th g iven boundary , car count , and i n i t i a l car con f i g u r a t i on
i n i tLane : : Int −> Int −> Float −> Int −> CarConfig −> Lane
in i tLane laneID s ta r tSeed bound carCount carConf ig = Lane i n i t C a r s 0 carCount s ta r tSeed laneID

20

where
i n i t C a r s = sort $ map (initCarFunc) [1 . . carCount]
initCarFunc index = in i tCar index carConf ig (i n i t C a r S t a t e (posStep ∗ (fromIntegral index)) 35) −− TODO make c on f i g u r a b l e (s t a r t i n g speed f o r pre− i n i t cars)
posStep = bound / (fromIntegral carCount)

i n i t S c e n e : : Int −> SceneConf ig −> Scene
i n i t S c e n e s ta r tSeed sceneConf ig = Scene $ map genLane [0 . . numLanes]
where

numLanes = (scLanes sceneConf ig)
genLane laneID = in i tLane laneID (s ta r tSeed ∗ laneID) (scBound
sceneConf ig) (scInitCarCount sceneConf ig) (s c I n i t C o n f i g
sceneConf ig)

updateScene : : SceneConf ig −> SpawnerConfig −> Bool −> Scene −> (Scene , B. ByteStr ing)
updateScene sceneConf ig spawnerConfig noDisplay scene = (nextScene , currBytes)
where

nextScene = Scene nextLanes
currBytes = BSC. concat currLaneBytes

(nextLanes , currLaneBytes) = unzip $ parMap rdeepseq updateLaneFunc currLanes

updateLaneFunc = updateLane noDisplay sceneConf ig spawnerConfig
currLanes = sLanes scene

−− Updates a s i n g l e lane and re turns the b y t e s t r i n g r ep r e s en t a t i on o f the current lane
−− and the next lane
updateLane : : Bool −> SceneConf ig −> SpawnerConfig −> Lane −> (Lane , B. ByteStr ing)
updateLane noDisplay sceneConf ig spawnerConfig lane = (nextLane , currLaneBytes)
where

nextLane = Lane nextCars nextStep nextMaxID nextSeed (lnID lane)
nextStep = (lnStep lane) + 1

currLaneBytes = laneIDBytes ‘BSC. append ‘ currLaneBytesRaw
laneIDBytes = BSC. pack (”\n{LaneID = ” ++ (show (lnID lane)) ++
” , Step = ” ++ (show (lnStep lane)) ++ ”}”)

(nextCars , currLaneBytesRaw) = processChunks noDisplay deltaT chunks
deltaT = scStepTime sceneConf ig

chunks = generateChunks 150 $ newCars ++ [dummyCar]
dummyCar = in i tCar (−1) (CarConfig 0 0 0 0 0) (i n i t C a r S t a t e 100
10000000 .0) −− r e a l l y b i g so d e f i n e t l y out o f the way

(nextMaxID , newCars)
| shouldSpawn = spawnNewCar (lnMaxCarId lane) nextSeed
(spSpawnSpeed spawnerConfig) (spCarConf igs spawnerConfig)
(spConf igFreqs spawnerConfig) f i l t e r e d C a r s
| otherwise = (lnMaxCarId lane , f i l t e r e d C a r s)

nextSeed = (lnSeed lane) + 1
shouldSpawn = nextStep ‘mod‘ (spSpawnRate spawnerConfig) == 0
f i l t e r e d C a r s = f i l t e r C a r s (scBound sceneConf ig) (lnCars lane)

−− Spawn new car , chos ing con f i g based on random seed

21

−− Returns new l i s t and new car ’ s ID
spawnNewCar : : Int −> Int −> Float −> [CarConfig] −> [Float] −> [Car] −> (Int , [Car])
spawnNewCar currMaxID seed s tar tSpeed carConf i g s weights ca r s

| null carCon f i g s | | null weights | | length carCon f i g s /=
length weights = (currMaxID , ca r s)
| otherwise = (nextID , newCar : ca r s)
where

nextID = currMaxID + 1
newCar = in i tCar nextID randConfig (i n i t C a r S t a t e
s tar tSpeed 0)

randConfig = selectByWeight rand weights carCon f i g s

(rand ,) = randomR (0 , tota lWeight) gen −− Generate a
random number with in the range of t o t a l weights
gen = mkStdGen seed
tota lWeight = sum weights

−− TODO t e s t t h e s e
−− Helper func t i on to s e l e c t an element based on the random number and we i gh t s
se lectByWeight : : Float −> [Float] −> [a] −> a
selectByWeight rand weights opt ions = selectByWeightHelper rand (scanl1 (+) weights) opt ions

se lectByWeightHelper : : Float −> [Float] −> [a] −> a
se lectByWeightHelper [] = error ”Empty l i s t , t h i s should not happen”
se lectByWeightHelper rand (w: ws) (x : xs)

| rand <= w = x
| otherwise = selectByWeightHelper rand ws xs

−− Take in a bound and f i l t e r a l l cars beyond t ha t bound
f i l t e r C a r s : : Float −> [Car] −> [Car]
f i l t e r C a r s bound ca r s = f i l t e r (carWithinBound bound) ca r s

processChunks : : Bool −> Float −> [SceneChunk] −> ([Car] , B. ByteStr ing)
processChunks noDisplay deltaT chunks = (concat cars , B. concat byteS t r ing s)

where
chunkResults = parMap rdeepseq (processChunk noDisplay deltaT) chunks
(cars , by t eS t r ing s) = unzip chunkResults

−− Returns a chunk wi th one fewer cars
processChunk : : Bool −> Float −> SceneChunk −> (SceneChunk , B. ByteStr ing)
processChunk noDisplay deltaT car s = (nextCars , currBytes)
where

nextCars = updateCarsChunk deltaT car s
currBytes

| noDisplay = BSC. pack []
| otherwise = BSC. pack $ show (in i t ca r s)

updateCarsChunk : : Float −> [Car] −> [Car]
updateCarsChunk deltaT chunk = map (updateCarPosVel deltaT)
(updateConsecPairsSkipLast updateCarAccel chunk)

22

updateConsecPairsSkipLast : : (a −> a −> b) −> [a] −> [b]
updateConsecPairsSkipLast [] = []
updateConsecPairsSkipLast [] = []
updateConsecPairsSkipLast update (x : xs) = update x (head xs) :
updateConsecPairsSkipLast update xs

−− Generate chunks o f s i z e n from a l i s t , wi th one element ove r l ap between each chunk .
generateChunks : : Int −> [a] −> [[a]]
generateChunks [] = []
generateChunks n xs

| length xs > n = take n xs : generateChunks n (drop (n − 1) xs)
| otherwise = [xs]

23

7.5 Sim.hs

{−# LANGUAGE DeriveGeneric , DeriveAnyClass #−}

module Sim (runSimLoop , simResultToByteString , SimResult (. .) , SimArgs (. .)) where
import Scene (Scene , SpawnerConfig (. .) , updateScene , i n i t S c e n e)

import Control . P a r a l l e l . S t r a t e g i e s (NFData)

import Config (SimConfig (. .) , getSceneConf ig , setSceneConf ig , getSpawnerConfig)
import Control . DeepSeq (rn f)
import quali f ied Data . ByteStr ing as B
import quali f ied Data . ByteStr ing . Char8 as BSC

−− Arguments passed in v ia command l i n e (not JSON)
data SimArgs = SimArgs {

numIters : : Int ,
noDisplay : : Bool

}

−− The r e s u l t o f a f u l l s imu la t i on
data SimResult = SimResult SimConfig [B. ByteStr ing]

−− Convert s imu la t i on r e s u l t to a b y t e s t r i n g f o r f i l e w r i t i n g
s imResultToByteStr ing : : SimResult −> B. ByteStr ing
simResultToByteStr ing (SimResult c o n f i g sceneBytes) = (BSC. pack (show c o n f i g)) ‘BSC. append ‘ (BSC. concat sceneBytes)

instance NFData SimResult where
rn f (SimResult s c ene s) = rn f s c ene s

−− Runs s imu la t i on and re turns p r i n t a b l e r e s u l t
runSimLoop : : SimArgs −> SimConfig −> SimResult
runSimLoop simArgs simConfig = SimResult s imConfig byteSt r ingResu l t

where
byteSt r ingResu l t = take (numIters simArgs) sceneGenerator

sceneGenerator = bui ldByteResu l t i n i t i a l S c e n e updateFunc

i n i t i a l S c e n e = i n i t S c e n e (spRandomSeed spawnerConfig) sceneConf ig
updateFunc = updateScene sceneConf ig spawnerConfig (noDisplay simArgs)

sceneConf ig = getSceneConf ig s imConfig
spawnerConfig = getSpawnerConfig simConfig

−− Bui lds i n f i n i t e l i s t o f s imu la t i on by t e r e s u l t
−− Takes update func t i on t ha t genera t e s the next scene and conver t s the current scene to b y t e s
bui ldByteResu l t : : Scene −> (Scene −> (Scene , B. ByteStr ing)) −> [B. ByteStr ing]
bu i ldByteResu l t currScene updateFunc = currBytes : (bu i ldByteResu l t nextScene updateFunc)
where

(nextScene , currBytes) = updateFunc currScene

24

