
COMS 4995 Project Report
Parallel Particle Swarm Optimization

Vincent Hugh Geiger(vhg2106), Siyi Hong(sh4325)

December 20, 2023

1 Introduction

1.1 Topic Introduction
Particle Swarm Optimization (PSO) is a computational method that originates from the

simulation of social behavior patterns observed in nature, particularly those of fish schooling

and bird flocking. Conceptualized by Kennedy and Eberhart in 1995, PSO is a metaheuristic

algorithm, meaning it makes few assumptions about the problem being optimized and can

search very large spaces of candidate solutions. Unlike other optimization algorithms that

require gradient information, PSO optimizes a problem by iteratively improving a candidate

solution with regard to a given measure of quality, or fitness function.

PSO works by initializing a group of random solutions, known as particles, and then moving

these particles around in the search space according to simple mathematical formulae. Each

particle's movement is influenced by its local best known position and the global best known

positions in the search space, which are updated as better positions are found by the particles.

This process is repeated until a satisfactory solution is discovered or a predefined criterion is

met. PSO is widely used in various fields such as engineering, economics, data mining, and

artificial intelligence due to its simplicity, efficiency, and ability to converge to a good solution

with relatively few tunable parameters.

1.2 Motivation
The motivation for parallelizing the Particle Swarm Optimization algorithm stems from the

ever-growing complexity and size of optimization problems in modern computational tasks. As

problem sizes and complexities increase, the computational time of traditional, sequential PSO

algorithms becomes a bottleneck, often rendering them impractical for large-scale applications.

Parallel computing offers a solution to this challenge by distributing the computational

workload across multiple processing elements, thereby significantly reducing execution times.

In PSO, each particle's position and velocity can be updated relatively independently, making it a

prime candidate for parallelization. By leveraging modern multi-core and distributed computing

environments, parallelPSO can handle larger problem sizes more efficiently, and provide

solutions in a fraction of the time required by its sequential counterpart.

1.3 Objective and Structure
We aim to compare different parallelization methods, including ‘parList rdeepseq’ and

‘parListChunk rdeepseq’, and seek to understand how each strategy affects the overall

performance and scalability of the PSO algorithm, particularly in terms of execution speed and

resource utilization. Additionally, we aim to investigate the impact of various experimental

parameters on the performance of parallelPSO. This includes examining the influence of

parameters like swarm size, number of iterations, and chunk size on the optimization process.

The report is structured to provide a comprehensive analysis of the parallelization strategies

applied to Particle Swarm Optimization (PSO). It begins with an introduction to PSO and its

significance, followed by a detailed background on PSO and parallel computing. The core of the

report focuses on the implementation of PSO in Haskell, exploring various parallelization

strategies, and an extensive evaluation of their performance. The report concludes with a

summary of findings and potential directions for future research. Appendices with code listings

and additional data are included for reference.

2 Background

2.1 PSO Algorithm Basics
The core of PSO lies in its method of updating each particle's velocity, which in turn guides the

search process. The velocity of a particle is updated each iteration using the following formula:

𝑣
𝑖
(𝑡 + 1) = 𝑤𝑣

𝑖
(𝑡) + 𝑐

1
𝑟

1
(𝑝𝑏𝑒𝑠𝑡

𝑖
− 𝑥

𝑖
(𝑡)) + 𝑐

2
𝑟

2
(𝑔𝑏𝑒𝑠𝑡

𝑖
− 𝑥

𝑖
(𝑡))

In this equation:

is the current velocity of the i-th particle;𝑣
𝑖
(𝑡)

represents the inertia weight, a parameter that controls the impact of the particle's previous𝑤
velocity on its current one;

and are coefficients for cognitive and social components, respectively, balancing the𝑐
1

𝑐
2

influence of the particle's own experience and the swarm's collective experience;

and are vectors of random numbers, introducing stochasticity into the process. We settled𝑟
1

𝑟
2

on purely using 0.5 for both values.

denotes the best position found by the i-th particle so far (personal best).𝑝𝑏𝑒𝑠𝑡
𝑖

is the best position found by any particle in the swarm (global best).𝑔𝑏𝑒𝑠𝑡
𝑖

Following the velocity update, each particle in the swarm updates its position. Since each

particle in the swarm updates its state (velocity and position) independently of others, this

presents an ideal scenario for parallel computation. By updating multiple particles concurrently,

parallelPSO can significantly enhance the exploration of the search space, leading to faster

convergence towards optimal solutions, especially in problems with high-dimensional and

complex search spaces.

2.2 Parallel Programming in Haskell
Haskell offers robust support for parallel programming, allowing developers to leverage multiple

processors to speed up program execution. There are two main avenues to achieve parallelism

in Haskell:

Pure Parallelism (Control.Parallel): This approach is suitable for speeding up pure computations.

It guarantees determinism (the same result every time) and eliminates issues like race

conditions and deadlocks. The par and pseq functions from the parallel library are fundamental

tools in this category.

Concurrency (Control.Concurrent): This method is used for parallelizing IO operations. It

involves multiple threads of control executing simultaneously, with IO operations from multiple

threads interleaved non-deterministically.

Two notable strategies from the Control.Parallel.Strategies module in Haskell that are

particularly relevant for parallelizing computations over lists are parList and parListChunk:

parList: This strategy is used to evaluate each element of a list in parallel. It applies a given

strategy to each element of the list. For example, parList rseq would evaluate each element of

the list to weak head normal form in parallel.

parListChunk: This strategy divides a list into chunks of specified size and then applies a strategy

to each chunk in parallel. It is useful for controlling the granularity of parallelism and can be

more efficient than parList for large lists, as it reduces the overhead associated with parallel task

management. An example use case would be parListChunk chunkSize rdeepseq, where

chunkSize is the size of each chunk, and rdeepseq ensures that each element in a chunk is fully

evaluated.

3 Implementation:

3.1 Defining Data Types and States
The total state used to implement our qualities is a Swarm. It deals with qualities we want to

call in a global context, and stores our list of particles. The data types of these particles are

defined as follows:

data Particle = Particle {position :: [Double],

velocity :: [Double],

bestPos :: [Double],

bestFitness :: Double} deriving (Show)

The type defines a position vector, velocity vector, and stores both bestPos (best position) and

bestFitness (best fitness value). When we update our particle we utilize these vectors, and

therefore it is necessary to define these in our type. Although it is possible to define only

bestPos and simply calculate the bestFitness when needed, this leads to an overlap in

calculations, requiring the calculation of bestFitness multiple times within every iteration. This

increases runtime and is simply inefficient. The total Swarm State is defined as follows:

data SwarmState = SwarmState

{particles :: [Particle],

size :: Int,

maxIters :: Int,

globalBest :: [Double],

inertia :: Double,

cognition :: Double,

social :: Double,

posDims :: Int,

veloDims :: Int,

chunk :: Int,

choice :: Int,

objFunc :: ([Double] -> Double)}

The state will store our global list of particles, as well as various parameters required for the

algorithm as well as our parallel implementation of it. We also define choice and objFunc within

the state such that we can deal with a multitude of various objective functions and

parallelization strategies.

3.2 Defining functions
We must first initialize our particles and swarm:

particleInit :: [Double] -> [Double] -> ([Double] -> Double) -> Particle

particleInit initPosition initVelocity objFunc' =

Particle {position = initPosition, velocity = initVelocity,

bestPos = initPosition, bestFitness = objFunc'

initPosition}

Our particleInit function takes as input an initial position and velocity vector (in the form of a

list). These initial positions will be determined using random in our Main file. We then simply

store this initial position as bestPos, as it is the only position the particle has ever explored. The

objective function inputted is then applied to the initial position, as it must be the best fitness.

Our swarm initialization deals with far more parameters. We define this later in our Main.

Initial values are defined in our Main file as either hard-coded, allowing for change only though

alteration of the program itself, or left up to user input. These initial values are simply defined

as makes sense. The two initial values of note are the objective function and our initial list of

particles. We then simply check which objective function the user inputted, and define the

functions accordingly. The list of initial particles is determined by using map to particleInit for

each of our initialVals, which is a list of tuples containing initial position and velocity vectors.

These are determined using random in Main. During the runtime of our program, we must

update our parameters based on our global parameters. To do so we run various updates on a

particle, all accumulated using updateParticle:

-- combines both updateVelo and pos to update the particle

updateParticle :: Particle -> [Double] -> Double -> Double -> Double

-> ([Double] -> Double) -> Particle

updateParticle particle globalBest' inertia' cognitive' social'

objFunc' =

updatePB (updatePos (updateVelo particle globalBest' inertia'

cognitive' social')) objFunc'

We simply update personal best using updatePB as one might expect. We compare our new

position and its associated fitness value and return a particle with the better of the two.

updateVelo simply computes our new velocity vector using zipWith4 and our defined formula

for all relevant vectors and returns the modified particle. For updatePos, which updates the

position of the particle, we want to update our particle’s position using simply our defined

formula. There are complications, however, as very commonly the particle can get stuck on the

bounds. Despite there being how many iterations left over, the particle would simply cease to

explore any particles on such an axis. To remedy this, we implemented bouncing.

If the particle’s new position determined by our formula is within the bounds, we simply return

our updated particle. If above the higher bound, or below the lower bound we simply set the

position in that axis to double the respective bound minus the new position. Depending on how

this occurs, however, the particle’s velocity would remain unchanged, and thus would keep

ramming into the wall over and over again. Thus, we also negate the velocity to ensure new

particles will be explored.

updatePos :: Particle -> Particle

updatePos particle =

particle {position = zipWith f' pos velo}

where pos = position particle

velo = velocity particle

f' p v = p + 0.5*v

We update our velocity using zipWith alongside our defined formula. We also defined our

various objective functions within SwarmOps.hs. Each function takes in a [Double] (our position

vector) and outputs a Double. The functions we implemented are the sphere function, a quartic

function, Rosenbrock’s banana function, Ackley’s function, and Rastrigin’s objective function.

objectiveFunction:: [Double] -> Double

-- function definition

We also define an instance NFData Particle to later ensure that our parallelization will evaluate

the particle in the way we desire.

3.3 entire program
The entire program works by iterating and updating the swarm until the defined max number of

iterations is reached. The function iterateSwarm implements this. It takes in nothing and returns

a SwarmState. Relevant values and items are obtained by utilizing the Swarm state. We then

iterate through our particles using updateParticles, simply feeding in the necessary inputs. This

is also where we choose which parallel strategy we will use.

iterateSwarm :: State SwarmState ()

iterateSwarm = do

swarm <- get

let -- define relevant values for use

...

m = fromIntegral(maxIters swarm)

i' = i * ((m-1)/m)

upParts =

case (choice swarm) of

-- use various strategies to update all of the particles and

modify the state of the swarm after determining the new global best

By updating our swarm’s inertia in a dynamic way, we can aid particles. The inertia begins at 1,

and as time goes on, reduces in value. In doing so, the particles are less likely to get stuck at

local minima, and instead escape from them early on. Due to the dynamic nature of the inertia,

however, later on a low inertia helps to ensure that a more accurate global minimum is

discovered.

To begin the iterations we utilize our main function. We then initialize our swarm and feed it

into our helper function, runPSOHelper, returning the output of that function. The helper calls

itself with the updated swarm, reducing a stored number n, until eventually reaching 0, and

simply returning.

-- Helper function for recursive PSO iterations

runPSOHelper :: Int -> State SwarmState ()

runPSOHelper 0 = return ()

runPSOHelper n = do

iterateSwarm -- Update the swarm

runPSOHelper (n - 1) -- Continue the iterations

Our main function defines all of our initial values, printing out user-friendly messages. After

ensuring that the correct number of arguments is inputted (an integer for choosing the method

of parallelization, and another integer for choosing an objective function), our swarm is

initialized. We utilize randomRIO when selecting the bounds to ensure some level stochasticity

main :: IO ()

main = do

args <- getArgs

progName <- getProgName

-- print messages

case args of

[parChoice, optEx] -> do

let -- initialize values

-- generate random position and velocity vectors

-- read in which function has been chosen

particles' = map (\(initP, initV) -> particleInit

initP initV objFunc') initialVals

(_, finalSwarm) = runState (runPSOHelper maxIters')

SwarmState {...}

-- output final message

_ -> die ...

4 Experimental Results
For the testing of all of our methods, we initialize maxIters' = 1000, size' = 20000, posDims' = 2,

veloDims' = 2, inertia' = 1, cognition' = 1.5, social' = 1.25. We will also always use Ackley’s

Function (objective function choice 4).

4.1 No Parallelization

-- no Parallelization

1 -> map (\a -> updateParticle a gB i c s o b) parts

When using this method, we use -N1, and so no parallelization occurs at all, and so it takes a

decently long time:

4.2 Using parList

-- use of only parList

3 -> map (\a -> updateParticle a gB i c s o b) parts

`using` parList rdeepseq

For using parList with rdeepseq with -N4, we obtain an interesting result. Our implementation

of parList simply pushes all the sparks onto the final core, and thus the runtime is significantly

blown up. Due to this, there is an incredible amount of overflow on that final core, and the

overhead is simply too high to even return a threadscope readable result. This is due to a simple

and naive implementation of parList.

Due to a poorly optimized implementation not utilizing rpar or anything of the sort, our

implementation ends up with a runtime of over 30 seconds. All of the sparks are pushed onto

one core, and the result is an incredibly blown up runtime.

4.3 Using parListChunk

-- use of parListChunk

2 -> map (\a -> updateParticle a gB i c s o) parts

`using` parListChunk (chunk swarm) rdeepseq

For using parListChunk with rdeepseq with -N4 and chunk size 500:

4.4 Different Parameter Settings
For -N4 results for various chunk sizes are as follows:

Chunk Size: Time:

500 9.02

750 7.43

1000 3.49

1500 6.59

2000 6.59

For chunk size 1000, we utilize various number of cores:

Number of Cores: Time:

2 10.06

4 3.49

6 6.04

16 9.35

The graphs are as follows:

For -N4 chunks it would seem the optimal number of chunks is about 100, given our initial

conditions. The number of cores, for 1000 chunks, is definitely 4. This is just a product of us

setting the optimal number of chunks for -N4 prior. Still, the type of data we obtain tells a lot.

5 Conclusion
Haskell’s various parallel strategies and functional format lend to an incredible number of

capabilities. If not properly implemented, however, as seen in our implementation of parList,

the runtime is blown up. Although an incredibly powerful language, there are so many ways for

parallelization to really blow up in your face. The extra stress due to the creation of various

sparks can be detrimental if poorly implemented. Even under non-optimal conditions, however,

our parListChunk implementation was able to easily outperform the non-parallelized

implementation. Decently optimized, our parListChunk implementation was able to reach 3.49

seconds, while the non-parallelized clocked it 14.04 seconds. Depending on our choice of

chunks and number of cores, our parallelization ends up at over 10 seconds. Choosing the

correct initial conditions is so incredibly important in ensuring a decent runtime.

SwarmOps.hs:

module SwarmOps (

updatePos,

updateVelo,

updatePB,

updateParticle,

updateGB,

particleInit,

Particle(..),

sphereFunction,

quartFunction,

rosenbrockFunction,

ackleyFunction,

rastriginObjective

) where

import qualified Data.List as L

import Control.Parallel.Strategies

import Control.DeepSeq

-- Sphere Function

sphereFunction :: [Double] -> Double

sphereFunction xs = sum $ map (^(2::Integer)) xs

-- Quartic function

quartFunction :: [Double] -> Double

quartFunction xs = sum $ map (^(5::Integer)) xs

-- Rosenbrock's Banana Function

rosenbrockFunction :: [Double] -> Double

rosenbrockFunction [x, y] = (1 - x)^(2::Integer) + 100 * (y -

x^(2::Integer))^(2::Integer)

rosenbrockFunction _ = error "Rosenbrock's function is defined for 2

dimensions only."

-- Ackley's Function

ackleyFunction :: [Double] -> Double

ackleyFunction xs = -20 * exp (a) - exp (b) + exp 1 + 20

where

n = fromIntegral $ length xs

a = -0.2 * sqrt (sum (map (\x -> x^(2::Integer)) xs) / n)

b = sum (map (\x -> cos (2 * pi * x)) xs) / n

-- Rastrigin's Objective Function

rastriginObjective :: [Double] -> Double

rastriginObjective xs = 10 * fromIntegral (length xs) + sum

[x^(2::Integer) - 10 * cos (2 * pi * x) | x <- xs]

data Particle = Particle {position :: [Double],

velocity :: [Double],

bestPos :: [Double],

bestFitness :: Double}

instance NFData Particle where

rnf (Particle pos velo bPos bFit) =

rnf pos `deepseq`

rnf velo `deepseq`

rnf bPos `deepseq`

rnf bFit

-- update particle pos, and outputs new pos vector

updatePos :: Particle -> Particle

updatePos particle =

particle {position = zipWith f' pos velo}

where pos = position particle

velo = velocity particle

f' p v = p + 0.5*v

-- update particle velo, and outputs new velo vector

updateVelo :: Particle -> [Double] -> Double -> Double -> Double ->

Particle

updateVelo particle globalBest' inertia' cognitive' social' =

particle {velocity = L.zipWith4 (\v p pB gB -> inertia' * v +

cognitive' * (pB - p) + social' * (gB - p))

(velocity particle) (position particle) (bestPos

particle) globalBest'}

--updates the personal best of that particle

updatePB :: Particle -> ([Double] -> Double) -> Particle

updatePB particle objFunc'

|fit < bestFitness particle = particle {bestFitness = fit,

bestPos = position

particle}

|otherwise = particle

where fit = objFunc' $ position particle

-- combines both updateVelo and pos to update the particle

updateParticle :: Particle -> [Double] -> Double -> Double -> Double

-> ([Double] -> Double) -> Particle

updateParticle particle globalBest' inertia' cognitive' social'

objFunc' =

updatePB (updatePos (updateVelo particle globalBest' inertia'

cognitive' social')) objFunc'

-- updates the global best of the swarm for the objective function

updateGB :: [Particle] -> [Double]

updateGB particles' = position (L.minimumBy (\a b -> compare

(bestFitness a) (bestFitness b)) particles')

`using` parList rseq

-- initialize particle with random value within given ranges

particleInit :: [Double] -> [Double] -> ([Double] -> Double) ->

Particle

particleInit initPosition initVelocity objFunc' =

Particle {position = initPosition, velocity = initVelocity,

bestPos = initPosition, bestFitness = objFunc'

initPosition}

Main.hs:

module Main (

main

) where

import SwarmOps as S

import System.Random

import Control.Monad

import Control.Parallel.Strategies

import System.Environment

import System.Exit

import Control.Monad.State

-- define SwarmState

data SwarmState = SwarmState

{particles :: [Particle],

size :: Int,

maxIters :: Int,

globalBest :: [Double],

inertia :: Double,

cognition :: Double,

social :: Double,

posDims :: Int,

veloDims :: Int,

chunk :: Int,

choice :: Int,

objFunc :: ([Double] -> Double)}

-- iterate through one instance of the swarm

iterateSwarm :: State SwarmState ()

iterateSwarm = do

swarm <- get

let gB = globalBest swarm

i = inertia swarm

c = cognition swarm

s = social swarm

o = objFunc swarm

m = fromIntegral(maxIters swarm)

i' = i * ((m-1)/m)

parts = particles swarm

upParts =

case (choice swarm) of

-- no Parallelization

1 ->

map (\a -> updateParticle a gB i c s o) parts

-- use of parListChunk

2 ->

map (\a -> updateParticle a gB i c s o) parts

`using` parListChunk (chunk swarm) rdeepseq

-- use of only parList

3 ->

map (\a -> updateParticle a gB i c s o) parts

`using` parList rdeepseq

_ -> []

upGB = updateGB $ upParts

modify $ \up -> up { particles = upParts,

globalBest = upGB,

inertia = i'

}

return ()

-- Helper function for recursive PSO iterations

runPSOHelper :: Int -> State SwarmState ()

runPSOHelper 0 = return ()

runPSOHelper n = do

-- Update the swarm

iterateSwarm

-- Continue the iterations

runPSOHelper (n - 1)

main :: IO ()

main = do

args <- getArgs

progName <- getProgName

putStrLn "<Parallelization Choices>"

putStrLn "<1:No Parallelization>"

putStrLn "<2:Use of parListChunk>"

putStrLn "<3:Use of purely parList>\n"

putStrLn "<Optimization Examples>"

putStrLn "<1:Sphere>"

putStrLn "<2:Quartic>"

putStrLn "<3:Rosenbrock>"

putStrLn "<4:Ackley>"

putStrLn "<5:Rastrigin>\n"

case args of

[parChoice, optEx] -> do

let size' = 20000

posDims' = 2

veloDims' = 2

maxIters' = 1000

inertia' = 1

cognition' = 1.5

social' = 1.25

chunk' = 1500

optEx' = read optEx::Int

choice' = read parChoice::Int

initialPos <- replicateM size' $ replicateM posDims'

(randomIO)

initialVelo <- replicateM size' $ replicateM veloDims'

(randomRIO (-1, 1))

let initialVals = zip initialPos initialVelo

objFunc'

|optEx' == 1 = sphereFunction

|optEx' == 2 = quartFunction

|optEx' == 3 = rosenbrockFunction

|optEx' == 4 = ackleyFunction

|optEx' == 5 = rastriginObjective

|otherwise = error "Usage: swarm-test-exe

<Parallelization Choice (1,2,3)> <Optimization Example (1,2,3,4,5)>"

particles' = map (\(initP, initV) -> particleInit

initP initV objFunc') initialVals

(_, finalSwarm) = runState (runPSOHelper maxIters')

SwarmState

{ particles = particles',

size = size',

maxIters = maxIters',

globalBest = updateGB particles',

inertia = inertia',

cognition = cognition',

social = social',

posDims = posDims',

veloDims = veloDims',

chunk = chunk',

choice = choice',

objFunc = objFunc'}

putStrLn "Final Global Best Position:"

print $ globalBest finalSwarm

putStrLn "Final Global Best Fitness:"

print $ (objFunc finalSwarm) $ globalBest finalSwarm

_ -> die $ "Usage: " ++ progName ++ " <Parallelization Choice

(1,2,3)> <Optimization Example (1,2,3,4,5)>"

-- test using stack run -- swarm-test-exe +RTS -N4 -l -RTS n m

-- threadscope swarm-test-exe.eventlog

-- must do so in ubuntu after going to cd "/mnt/c/Users/vindi/Haskell

Stuff/project/swarm-test"

