
 Parallel Functional Programming
 Final Project Report
 Group members: Fernando Notari, Maximo Jalife

 A Parallel Traveling Salesman Problem Solver with Genetic Algorithms

 Problem Overview
 The objective of our project is to come up with good candidate solutions to the Traveling
 Salesman Problem (TSP). The problem statement is:

 “ Given a set of N cities and a unit measure of distance, what is the shortest possible path which
 visits all N cities and returns to the starting point? ”

 It is easy to come up with a random candidate solution to the question: start at a random city. If
 the next city has been visited, skip it. Else, visit it. When all cities have been visited, return to the
 beginning. The problem comes when verifying if this generated solution is the shortest possible
 path, as we would have to traverse all others to know for sure. There are possible paths (𝑁 − 1)!

 2

 (as some paths are rotations of others), but since our proposed solver does not check if two paths
 are equal when rotated we will effectively be dealing with possibilities. 𝑁 !

 Genetic Algorithm Approach
 In order to create candidate solutions to the TSP, we will employ a genetic algorithm (GA). As a
 class of algorithms, GAs are inspired by natural selection: they take as input a population, evolve
 it over the course of multiple generations, and therefore output a fitter population than the initial.
 In our case, an individual will be a tour through the cities and therefore a candidate solution.
 There are many parameters which may be tuned in the algorithm:

 - The number of generations/terminating conditions: in our case we will use a fixed
 number of generations. A possible terminating condition would be stopping if
 improvement plateaus.

 - The number of crossovers per generation: this can be a fixed number or vary according to
 population size.

 - The crossover function: we made use of an ordered crossover 1 in order to ensure each city
 is only visited once.

 - The mutation probability: this parameter may vary from 1 to 100 and is normally kept
 low to preserve the best aspects of the prior generation. It helps the algorithm escape
 local maximums.

 1 https://mat.uab.cat/~alseda/MasterOpt/GeneticOperations.pdf

https://mat.uab.cat/~alseda/MasterOpt/GeneticOperations.pdf

 - The mutation function: our project randomly swaps two cities in an offspring before in
 order to mutate it. This function may be changed in the process of tuning it.

 - The size of the initial population: we let the initial population equal the number of cities,
 though in general the larger this size the better (pending hardware considerations).

 - The m

 Observations : our algorithm incorporates elitism: we only randomly cross the top 10% of the
 population in terms of fitness. We also keep all individuals in each generation to further expand
 the search space.

 Logistical considerations
 In order to assess the quality of our results, we used only city maps from TSPLIB 2 made
 available by Heidelberg University. We read in the cities from the problem file and compare it
 against their provided best solution.

 Parallelization Attempts
 We attempted to parallelize this algorithm in two separate instances: first when performing the
 crossovers, and second when calculating fitness. While the former achieved a negligible
 improvement in runtime (and core management efficiency), the former allowed the program to
 speed up significantly. The more cores used in running the program, the faster it became. This
 speaks to its scalability; the program benefits from increased computational power.

 FIGURE 1: Runtime versus number of cores

 2 http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

 This result was also true for different maps. The graph above is for one such map with 280 cities,
 and we can see the same pattern in different sized maps:

 FIGURE 2: Runtime versus number of cores for different maps (different plots used due to y-axis scale)

 The same trend is visible across all maps (approaching the function). As the number of cities 1
 𝑥

 increases the decrease in runtime takes longer to plateau, meaning larger problems may benefit
 from stronger computing hardware. The resulting threadscope visualization of the eventLog file
 back these results as all cores were used in a balanced manner and each additional core was used:

 FIGURE 3: Threadscope visualization of core usage. Increased activity later in the
 runtime is a product of the increased population size.

 Speedup Analysis
 The best theoretical speedup of a parallelized program is dictated by Amdahl's Law, which
 states:

 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = 1
 1 − 𝑃 + 𝑃

 𝑁

 Where P is the percentage of the program which may be parallelized. We compared the results
 we obtained from our parallelized program for different maps against the theoretical speedup our
 program could have achieved in the case that 95% of it could be parallelized:

 FIGURE 4: Actual speedup versus ideal speedup

 The first thing to note is that the att48 map (with 48 cities) surpassed the ideal speedup, which is
 theoretically. This is likely due to possible hardware considerations and also possibly due to our
 P estimate being incorrect. It is also important to note that for all maps, the more cores added
 meant the farther we were from the ideal speedup. Furthermore our program appears to work
 better for maps of increased sizes, as evidenced by the fact that the larger the map the higher its
 maximum speedup was.
 In order to estimate the percentage of our program which currently run in parallel, we assumed
 our speedup for 2 cores for the dsj1000 map was ideal and solved for P using Amdahl's Law:

 𝑆 = 1
 1 − 𝑃 + 𝑃

 𝑁

 ⇒ 1 = 𝑆 (1 − 𝑃) + 𝑆𝑃
 𝑁 ⇒ 𝑃 = 𝑆 − 1

 𝑆 − 𝑆
 𝑁

 Using the formula above and our achieved speedup (of 1.8x), we calculated that our estimate of
 the percentage of our program which runs in parallel is P = 0.89.

 CODE APPENDIX
 {-
 COMPILE THE CODE: stack --resolver lts-21.9 ghc -- -O2 -threaded -rtsopts --make -Wall -O tsp

 USAGE: ./tsp [problem_file] +RTS -N8 -ls
 [problem_file] format:
 - Each line represents a city
 - Each line takes the form:

 [index] [x-coord] [y-coord]
 -}

 import System.Environment (getArgs,getProgName)
 import System.IO (hPutStrLn,stderr)
 import Control.Parallel.Strategies (parList,rpar,using,rseq,parMap)
 import System.Exit (exitFailure)
 import qualified Data.Map as Map
 import System.Random.Shuffle (shuffleM)
 import System.Random (randomRIO)
 import Data.List (sortBy,maximumBy)
 import Data.Function (on)
 import Control.Monad (replicateM)

 type City = (Int,Float,Float)
 type Route = [Int]

 -- MUTATES OFFSPRING. TUNE MUTATION FUNCITON HERE
 mutate :: Route -> IO Route
 mutate tour = do

 let len = length tour
 index1 <- randomRIO (0, len - 1)
 index2 <- randomRIO (0, len - 1)
 let mutatedTour = swapCities index1 index2 tour
 return mutatedTour

 -- SWAPS TWO CITIES IN A TOUR
 swapCities :: Int -> Int -> Route -> Route
 swapCities i j tour = map swap [0 .. ((length tour) - 1)]
 where
 swap k
 | k == i = (tour !! j)
 | k == j = (tour !! i)
 | otherwise = (tour !! k)

 --PERFORMS THE CROSSOVER BETWEEN EACH PAIR OF PARENTS IN A GIVEN LIST
 crossover :: [(Route, Route)] -> IO [Route]
 crossover parentPairs = mapM (\(parent1, parent2) -> crossoverSingle parent1 parent2) parentPairs
 --Ordered Crossover (OX)
 crossoverSingle :: Route -> Route -> IO Route
 crossoverSingle parent1 parent2 = do

 let len = length parent1
 (start, end) <- do

 indices <- shuffleM [0 .. (len - 1)]
 let start' = head indices

 end' = last indices
 return (min start' end', max start' end')

 let slice = take (end - start) . drop start
 sliceP1 = slice parent1
 remainderP2 = filter (`notElem` sliceP1) parent2
 offspring = sliceP1 ++ remainderP2

 mutationProb <- randomRIO (1, 100) :: IO Int
 finalOffspring <- if mutationProb <= 5 --TUNE MUTATION PROBABILITY HERE

 then mutate offspring
 else return offspring

 return $ finalOffspring ++ [head finalOffspring]

 -- CALCULATES THE TOTAL DISTANCE TRAVELED DURING A TOUR
 tourLength :: Map.Map (Int, Int) Float -> Route -> Float
 tourLength distances tour =

 sum [Map.findWithDefault 0 (city1,city2) distances | (city1,city2) <- zip tour (tail tour)]

 -- CALCULATES THE FITNESS OF AN INDIVIDUAL
 tourFitness :: Map.Map (Int, Int) Float -> Route -> Float
 tourFitness distances tour = 1 / tourLength distances tour --TUNE FITNESS METRIC HERE

 -- RANDOMLY GENERATES A ROUTE THAT VISITS EACH CITY ONCE AND RETURNS TO
 THE STARTING POINT
 newRandomRoute :: Int -> IO Route
 newRandomRoute numCities = do

 shuffledIndices <- shuffleM [1..numCities]
 return $ shuffledIndices ++ [head shuffledIndices]

 -- RANDOMLY GENERATES AN INITIAL POPULATION
 generateInitPop :: Int -> Int -> IO [Route]
 generateInitPop numCities populationSize =

 sequence [newRandomRoute numCities | _ <- [1..populationSize]]

 -- PARSES INPUT FILE AND STORES CITY INFORMATION

 parseCity :: String -> City
 parseCity line = case words line of

 [index,x,y] -> (read index, read x, read y)
 _ -> error "Invalid problem file format"

 -- CALCULATES PAIRWISE EUCLYDEAN DISTANCE FOR THE GIVEN SET
 calculateDistances :: [City] -> Map.Map (Int,Int) Float
 calculateDistances cities =

 Map.fromList [((i,j), distance (x1,y1) (x2,y2)) | (i,x1,y1) <- cities, (j,x2,y2) <- cities, i /= j]

 -- CALCULATES EUCLYDEAN DISTANCE BETWEEN TWO CITIES
 distance :: (Float,Float) -> (Float,Float) -> Float
 distance (x1,y1) (x2,y2) = sqrt ((x2 - x1)^(2::Integer) + (y2 - y1)^(2::Integer))

 -- RANDOMLY PICKS A PARENT FROM A LIST
 selectParent :: [Route] -> IO Route
 selectParent elites = do

 parentIndex <- randomRIO (0, length elites - 1)
 return (elites !! parentIndex)

 -- HELPER FUNCITON TO BREAK A LIST INTO CHUNKS WITH chunkSize ELEMENTS IN EACH
 makeChunks :: Int -> [a] -> [[a]]
 makeChunks _ [] = []
 makeChunks chunkSize lst = chunk : makeChunks chunkSize rest

 where
 (chunk,rest) = splitAt chunkSize lst

 -- CREATE A NEW GENERATION FROM THE OLD
 generateNextGeneration :: [Route] -> [Route] -> IO [Route]
 generateNextGeneration remainingPopulation elites = do

 pairs <- replicateM 50 $ do -- TUNE NUMBER OF CROSSOVERS PER GENERATION HERE
 parent1 <- selectParent elites
 parent2 <- selectParent elites
 return (parent1, parent2)

 let pairChunks = makeChunks 1 pairs --TUNE NUMBER OF PAIRS PER CHUNK HERE
 offSpring = map crossover pairChunks `using` parList rseq

 offspring <- sequence (offSpring)
 return $ elites ++ (concat offspring) ++ remainingPopulation

 -- THIS FUNCTION PERFORMS THE BULK OF THE ALGORITHM
 evolve :: Int -> [Route] -> Map.Map (Int, Int) Float -> IO [Route]
 evolve 0 population _ = return population

 evolve gen population distances = do
 let fitnesses = parMap rpar (tourFitness distances) population

 sortedPopulation = map snd $ sortBy (compare `on` fst) $ zip fitnesses population
 elites = take (length population `div` 10) sortedPopulation
 remainingPopulation = drop (length population `div` 10) sortedPopulation

 newGeneration <- generateNextGeneration remainingPopulation elites
 evolve (gen - 1) newGeneration distances

 main :: IO ()
 main = do

 args <- getArgs
 case args of

 [filename] -> do
 content <- readFile filename
 let cities = map parseCity (lines content)

 distances = calculateDistances cities
 numCities = length cities

 initialPopulation <- generateInitPop numCities numCities --TUNE INITIAL POPUALTION
 SIZE HERE

 let numGenerations = 100 --TUNE NUMBER OF GENERATIONS HERE
 finalPopulation <- evolve numGenerations initialPopulation distances
 let fitnesses = parMap rpar (tourFitness distances) finalPopulation

 bestTour = snd $ maximumBy (compare `on` fst) $ zip fitnesses finalPopulation
 bestFitness = tourFitness distances bestTour
 bestDistance = tourLength distances bestTour

 putStrLn $ "Best Tour: \n" ++ show bestTour ++ "\n"
 putStrLn $ "Fitness: " ++ show bestFitness
 putStrLn $ "Distance: " ++ show bestDistance

 _ -> do
 pn <- getProgName
 hPutStrLn stderr $ "Usage: " ++ pn ++ " <tsp_filename>"
 exitFailure

