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 A Parallel Traveling Salesman Problem Solver with Genetic Algorithms 

 Problem Overview 
 The  objective  of  our  project  is  to  come  up  with  good  candidate  solutions  to  the  Traveling 
 Salesman Problem (TSP). The problem statement is: 

 “  Given a set of N cities and a unit measure of distance, what is the shortest possible path which 
 visits all N cities and returns to the starting point?  ” 

 It  is  easy  to  come  up  with  a  random  candidate  solution  to  the  question:  start  at  a  random  city.  If 
 the  next  city  has  been  visited,  skip  it.  Else,  visit  it.  When  all  cities  have  been  visited,  return  to  the 
 beginning.  The  problem  comes  when  verifying  if  this  generated  solution  is  the  shortest  possible 
 path,  as  we  would  have  to  traverse  all  others  to  know  for  sure.  There  are  possible  paths ( 𝑁 − 1 )!
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 (as  some  paths  are  rotations  of  others),  but  since  our  proposed  solver  does  not  check  if  two  paths 
 are equal when rotated we will effectively be dealing with  possibilities.  𝑁 !

 Genetic Algorithm Approach 
 In  order  to  create  candidate  solutions  to  the  TSP,  we  will  employ  a  genetic  algorithm  (GA).  As  a 
 class  of  algorithms,  GAs  are  inspired  by  natural  selection:  they  take  as  input  a  population,  evolve 
 it  over  the  course  of  multiple  generations,  and  therefore  output  a  fitter  population  than  the  initial. 
 In  our  case,  an  individual  will  be  a  tour  through  the  cities  and  therefore  a  candidate  solution. 
 There are many parameters which may be tuned in the algorithm: 

 -  The number of generations/terminating conditions: in our case we will use a fixed 
 number of generations. A possible terminating condition would be stopping if 
 improvement plateaus. 

 -  The number of crossovers per generation: this can be a fixed number or vary according to 
 population size. 

 -  The crossover function: we made use of an ordered crossover  1  in order to ensure each city 
 is only visited once. 

 -  The mutation probability: this parameter may vary from 1 to 100 and is normally kept 
 low to preserve the best aspects of the prior generation. It helps the algorithm escape 
 local maximums. 

 1  https://mat.uab.cat/~alseda/MasterOpt/GeneticOperations.pdf 

https://mat.uab.cat/~alseda/MasterOpt/GeneticOperations.pdf


 -  The mutation function: our project randomly swaps two cities in an offspring before in 
 order to mutate it. This function may be changed in the process of tuning it. 

 -  The size of the initial population: we let the initial population equal the number of cities, 
 though in general the larger this size the better (pending hardware considerations). 

 -  The m 

 Observations  :  our  algorithm  incorporates  elitism:  we  only  randomly  cross  the  top  10%  of  the 
 population  in  terms  of  fitness.  We  also  keep  all  individuals  in  each  generation  to  further  expand 
 the search space. 

 Logistical considerations 
 In  order  to  assess  the  quality  of  our  results,  we  used  only  city  maps  from  TSPLIB  2  made 
 available  by  Heidelberg  University.  We  read  in  the  cities  from  the  problem  file  and  compare  it 
 against  their provided best solution. 

 Parallelization Attempts 
 We  attempted  to  parallelize  this  algorithm  in  two  separate  instances:  first  when  performing  the 
 crossovers,  and  second  when  calculating  fitness.  While  the  former  achieved  a  negligible 
 improvement  in  runtime  (and  core  management  efficiency),  the  former  allowed  the  program  to 
 speed  up  significantly.  The  more  cores  used  in  running  the  program,  the  faster  it  became.  This 
 speaks to its scalability; the program benefits from increased computational power. 

 FIGURE 1: Runtime versus number of cores 

 2  http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/ 

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/


 This  result  was  also  true  for  different  maps.  The  graph  above  is  for  one  such  map  with  280  cities, 
 and we can see the same pattern in different sized maps: 

 FIGURE 2: Runtime versus number of cores for different maps (different plots used due to y-axis scale) 

 The  same  trend  is  visible  across  all  maps  (approaching  the  function  ).  As  the  number  of  cities  1 
 𝑥 

 increases  the  decrease  in  runtime  takes  longer  to  plateau,  meaning  larger  problems  may  benefit 
 from  stronger  computing  hardware.  The  resulting  threadscope  visualization  of  the  eventLog  file 
 back these results as all cores were used in a balanced manner and each additional core was used: 

 FIGURE 3: Threadscope visualization of core usage. Increased activity later in the 
 runtime is a product of the increased population size. 



 Speedup Analysis 
 The  best  theoretical  speedup  of  a  parallelized  program  is  dictated  by  Amdahl's  Law,  which 
 states: 

 𝑆𝑝𝑒𝑒𝑑𝑢𝑝    =     1 
 1 − 𝑃 +  𝑃 

 𝑁 

 Where  P  is  the  percentage  of  the  program  which  may  be  parallelized.  We  compared  the  results 
 we  obtained  from  our  parallelized  program  for  different  maps  against  the  theoretical  speedup  our 
 program could have achieved in the case that 95% of it could be parallelized: 

 FIGURE 4: Actual speedup versus ideal speedup 

 The  first  thing  to  note  is  that  the  att48  map  (with  48  cities)  surpassed  the  ideal  speedup,  which  is 
 theoretically.  This  is  likely  due  to  possible  hardware  considerations  and  also  possibly  due  to  our 
 P  estimate  being  incorrect.  It  is  also  important  to  note  that  for  all  maps,  the  more  cores  added 
 meant  the  farther  we  were  from  the  ideal  speedup.  Furthermore  our  program  appears  to  work 
 better  for  maps  of  increased  sizes,  as  evidenced  by  the  fact  that  the  larger  the  map  the  higher  its 
 maximum speedup was. 
 In  order  to  estimate  the  percentage  of  our  program  which  currently  run  in  parallel,  we  assumed 
 our speedup for 2 cores for the dsj1000 map was ideal and solved for P using Amdahl's Law: 

 𝑆    =     1 
 1 − 𝑃 +  𝑃 

 𝑁 

   ⇒  1 =  𝑆 ( 1 −  𝑃 ) +  𝑆𝑃 
 𝑁    ⇒     𝑃 =  𝑆 − 1 

 𝑆 −  𝑆 
 𝑁 

 Using  the  formula  above  and  our  achieved  speedup  (of  1.8x),  we  calculated  that  our  estimate  of 
 the percentage of our program which runs in parallel is P = 0.89. 



 CODE APPENDIX 
 {- 
 COMPILE THE CODE: stack --resolver lts-21.9 ghc -- -O2 -threaded -rtsopts --make -Wall -O tsp 

 USAGE: ./tsp [problem_file] +RTS -N8 -ls 
 [problem_file] format: 
 - Each line represents a city 
 - Each line takes the form: 

 [index] [x-coord] [y-coord] 
 -} 

 import System.Environment (getArgs,getProgName) 
 import System.IO (hPutStrLn,stderr) 
 import Control.Parallel.Strategies (parList,rpar,using,rseq,parMap) 
 import System.Exit (exitFailure) 
 import qualified Data.Map as Map 
 import System.Random.Shuffle (shuffleM) 
 import System.Random (randomRIO) 
 import Data.List (sortBy,maximumBy) 
 import Data.Function (on) 
 import Control.Monad (replicateM) 

 type City = (Int,Float,Float) 
 type Route = [Int] 

 -- MUTATES OFFSPRING. TUNE MUTATION FUNCITON HERE 
 mutate :: Route -> IO Route 
 mutate tour = do 

 let len = length tour 
 index1 <- randomRIO (0, len - 1) 
 index2 <- randomRIO (0, len - 1) 
 let mutatedTour = swapCities index1 index2 tour 
 return mutatedTour 

 -- SWAPS TWO CITIES IN A TOUR 
 swapCities :: Int -> Int -> Route -> Route 
 swapCities i j tour = map swap [0 .. ((length tour) - 1)] 
 where 
 swap k 
 | k == i     = (tour !! j) 
 | k == j     = (tour !! i) 
 | otherwise  = (tour !! k) 



 --PERFORMS THE CROSSOVER BETWEEN EACH PAIR OF PARENTS IN A GIVEN LIST 
 crossover :: [(Route, Route)] -> IO [Route] 
 crossover parentPairs = mapM (\(parent1, parent2) -> crossoverSingle parent1 parent2) parentPairs 
 --Ordered Crossover (OX) 
 crossoverSingle :: Route -> Route -> IO Route 
 crossoverSingle parent1 parent2 = do 

 let len = length parent1 
 (start, end) <- do 

 indices <- shuffleM [0 .. (len - 1)] 
 let start' = head indices 

 end' = last indices 
 return (min start' end', max start' end') 

 let slice = take (end - start) . drop start 
 sliceP1 = slice parent1 
 remainderP2 = filter (`notElem` sliceP1) parent2 
 offspring = sliceP1 ++ remainderP2 

 mutationProb <- randomRIO (1, 100) :: IO Int 
 finalOffspring <- if mutationProb <= 5       --TUNE MUTATION PROBABILITY HERE 

 then mutate offspring 
 else return offspring 

 return $ finalOffspring ++ [head finalOffspring] 

 -- CALCULATES THE TOTAL DISTANCE TRAVELED DURING A TOUR 
 tourLength :: Map.Map (Int, Int) Float -> Route -> Float 
 tourLength distances tour = 

 sum [Map.findWithDefault 0 (city1,city2) distances | (city1,city2) <- zip tour (tail tour)] 

 -- CALCULATES THE FITNESS OF AN INDIVIDUAL 
 tourFitness :: Map.Map (Int, Int) Float -> Route -> Float 
 tourFitness distances tour = 1 / tourLength distances tour --TUNE FITNESS METRIC HERE 

 --  RANDOMLY  GENERATES  A  ROUTE  THAT  VISITS  EACH  CITY  ONCE  AND  RETURNS  TO 
 THE STARTING POINT 
 newRandomRoute :: Int -> IO Route 
 newRandomRoute numCities = do 

 shuffledIndices <- shuffleM [1..numCities] 
 return $ shuffledIndices ++ [head shuffledIndices] 

 -- RANDOMLY GENERATES AN INITIAL POPULATION 
 generateInitPop :: Int -> Int -> IO [Route] 
 generateInitPop numCities populationSize = 

 sequence [newRandomRoute numCities | _ <- [1..populationSize]] 

 -- PARSES INPUT FILE AND STORES CITY INFORMATION 



 parseCity :: String -> City 
 parseCity line = case words line of 

 [index,x,y]   -> (read index, read x, read y) 
 _             -> error "Invalid problem file format" 

 -- CALCULATES PAIRWISE EUCLYDEAN DISTANCE FOR THE GIVEN SET 
 calculateDistances :: [City] -> Map.Map (Int,Int) Float 
 calculateDistances cities = 

 Map.fromList [((i,j), distance (x1,y1) (x2,y2)) | (i,x1,y1) <- cities, (j,x2,y2) <- cities, i /= j] 

 -- CALCULATES EUCLYDEAN DISTANCE BETWEEN TWO CITIES 
 distance :: (Float,Float) -> (Float,Float) -> Float 
 distance (x1,y1) (x2,y2) = sqrt ((x2 - x1)^(2::Integer) + (y2 - y1)^(2::Integer)) 

 -- RANDOMLY PICKS A PARENT FROM A LIST 
 selectParent :: [Route] -> IO Route 
 selectParent elites = do 

 parentIndex <- randomRIO (0, length elites - 1) 
 return (elites !! parentIndex) 

 -- HELPER FUNCITON TO BREAK A LIST INTO CHUNKS WITH chunkSize ELEMENTS IN EACH 
 makeChunks :: Int -> [a] -> [[a]] 
 makeChunks _ [] = [] 
 makeChunks chunkSize lst = chunk : makeChunks chunkSize rest 

 where 
 (chunk,rest) = splitAt chunkSize lst 

 -- CREATE A NEW GENERATION FROM THE OLD 
 generateNextGeneration :: [Route] -> [Route] -> IO [Route] 
 generateNextGeneration remainingPopulation elites = do 

 pairs <- replicateM 50 $ do    -- TUNE NUMBER OF CROSSOVERS PER GENERATION HERE 
 parent1 <- selectParent elites 
 parent2 <- selectParent elites 
 return (parent1, parent2) 

 let pairChunks = makeChunks 1 pairs  --TUNE NUMBER OF PAIRS PER CHUNK HERE 
 offSpring = map crossover pairChunks `using` parList rseq 

 offspring <- sequence (offSpring) 
 return $ elites ++ (concat offspring) ++ remainingPopulation 

 -- THIS FUNCTION PERFORMS THE BULK OF THE ALGORITHM 
 evolve :: Int -> [Route] -> Map.Map (Int, Int) Float -> IO [Route] 
 evolve 0 population _ = return population 



 evolve gen population distances = do 
 let fitnesses = parMap rpar (tourFitness distances) population 

 sortedPopulation = map snd $ sortBy (compare `on` fst) $ zip fitnesses population 
 elites = take (length population `div` 10) sortedPopulation 
 remainingPopulation = drop (length population `div` 10) sortedPopulation 

 newGeneration <- generateNextGeneration remainingPopulation elites 
 evolve (gen - 1) newGeneration distances 

 main :: IO () 
 main = do 

 args <- getArgs 
 case args of 

 [filename] -> do 
 content <- readFile filename 
 let cities = map parseCity (lines content) 

 distances = calculateDistances cities 
 numCities = length cities 

 initialPopulation  <-  generateInitPop  numCities  numCities  --TUNE  INITIAL  POPUALTION 
 SIZE HERE 

 let numGenerations = 100  --TUNE NUMBER OF GENERATIONS HERE 
 finalPopulation <- evolve numGenerations initialPopulation distances 
 let fitnesses = parMap rpar (tourFitness distances) finalPopulation 

 bestTour = snd $ maximumBy (compare `on` fst) $ zip fitnesses finalPopulation 
 bestFitness = tourFitness distances bestTour 
 bestDistance = tourLength distances bestTour 

 putStrLn $ "Best Tour: \n" ++ show bestTour ++ "\n" 
 putStrLn $ "Fitness: " ++ show bestFitness 
 putStrLn $ "Distance: " ++ show bestDistance 

 _ -> do 
 pn <- getProgName 
 hPutStrLn stderr $ "Usage: " ++ pn ++ " <tsp_filename>" 
 exitFailure 


