
StarFinder: Identifying Constellations from a

Subset of Stars

Michelle Tang (mt3486), Stella Park (shp2147), Yumeng Bai (yb2542)

December 21, 2023

1 Introduction

1.1 Problem Statement

The foundation of this project aims to develop an efficient and parallelized
constellation finder program in Haskell, capitalizing on the language’s inher-
ent strengths in concurrent and parallel programming. Our system takes a
collection of 3D coordinates (chosen by the user) as input, and deduces the
constellation to which the set of points belongs using a sophisticated pattern
recognition algorithm.

1.2 Use Cases

Constellation-matching software, which identifies constellations based on a
set of stars selected by a user, can have several important use cases across
different fields:

• Astronomy Education: Our program can be a powerful tool and aid in
teaching and learning astronomy. It can help students and astronomy
enthusiasts learn about different constellations and their positioning
in the night sky, and help identify unknown constellations based on
location.

• Stargazing and Amateur Astronomy: Amateur astronomers and stargaz-
ing enthusiasts can use our tool to enhance their night-sky viewing
experience. It can help them identify constellations quickly and learn
more about the stars they are viewing by providing the program with
the locations of the stars they’re viewing.

1

• Astronomical Research: Researchers can use the program to quickly
identify areas of the sky for their studies. It can aid in cataloging star
patterns and in the study of the movement and evolution of constel-
lations over time (of course, this assumes a more sophisticated future
iteration of our program with more comprehensive celestial data).

• Augmented Reality (AR) and Virtual Reality (VR) Applications: In
AR and VR environments, such software could provide an immersive
educational experience, allowing users to explore the night sky in a
simulated environment.

• Astrophotography: Astrophotographers can use the software to plan
their shoots, identify constellations in their photographs, and provide
educational content alongside their images.

1.3 Literature Review

There are several preexisting mobile apps and softwares that can be con-
sidered “state-of-the-art” techniques that tackle the same problem as our
project. One such app is Stellarium, a popular open-source planetarium
software. Stellarium is used by both amateurs and professionals for sky
observing. It provides a realistic 3D sky with constellations, planets, and
stars, and allows users to identify and learn about different celestial objects.
Another app that we tested during our literature review was Star Chart,
which offers an augmented reality experience, allowing users to point their
mobile device at the sky and see a map of the stars and constellations over-
head.

1.4 Proposed Approach

The core strategy involves several key components: first, the design will
prioritize parallelizing the computationally intensive tasks involved in pars-
ing the input dots against the constellation database. Leveraging Haskell’s
robust concurrency primitives and functional nature, the program will dis-
tribute workloads across multiple cores or processors to boost performance.
Second, the implementation of rotation algorithms will accommodate vari-
ous orientations of the input dots. By comparing rotated versions against
the constellation database, pattern recognition techniques will be employed
to identify the closest matches. Additionally, efficient management of the
constellation database through optimized data structures like balanced trees

2

or hash maps will streamline lookup processes and enhance overall perfor-
mance.

• The input is given as a set of coordinates, which are ”stars.”

• The reference database is a collection of constellations in coordinates,
provided by [].

• The input set of coordinates can be rotated to be compared with the
database.

• The input set can be a combination of subset of stars coming from
more than one constellations.

• The output is a list of constellations that consist the input set. There
can be more than one list as an output.

2 Approach Overview

2.1 Fingerprint Pattern Match

The goal of the project is to create a program to which a user can input
coordinates of a set of stars and be able to identify a constellation from it if
there is any match. The input set of stars may be translated, distorted, or
rotated from the match in the database, which makes the naive coordinate
match not a good algorithm for this problem. Fingerprint pattern match is
commonly used to tackle the issue.

Traditionally, fingerprints are depicted as sets of features termed minu-
tiae. In our context, we liken a fingerprint to a constellation and its minu-
tiae to stars. Matching algorithms compute a score reflecting the likeness
between the candidate minutiae set, M = m1, ...,ml, and the template minu-
tiae set, M ′ = m′

1, ...,m
′
l′ . The challenge lies in calculating such similarity

scores, influenced by various experimental parameters affecting minutiae
comparison. Initial hurdles involve basic transformations like translation
and rotation, yet minutiae can vanish (occlusion), emerge unexpectedly
(noise), or undergo nonlinear distortion. Many matching algorithms at-
tempt to align M’ with M through translation and rotation, tackling nonlin-
ear transformations using diverse heuristics. Bringer and Despiegel (BD)[2]
address this challenge by defining ”vicinity.” This article introduces a Haskell
implementation of BD’s algorithm with parallelization.

3

2.2 Data Acquisition and Preprocessing

In order to build a constellation finder, the first step is to develop a compre-
hensive database of constellations and their corresponding celestial bodies,
wherein each celestial body within each constellation is identified using a set
of three-dimensional Cartesian coordinates (x, y, z). The pipeline for data
acquisition and preprocessing includes several key phases: data collection,
data preprocessing and parsing, and conversion of astronomical coordinates.
Each of these steps are described in more detail below:

2.2.1 Data Collection

To begin the construction of our constellation database, we first searched
for a reliable astronomical data source containing the celestial information
that was necessary for our algorithm. Unfortunately, after surveying several
astronomical catalogues, it became apparent that most preexisting inter-
galactic datasets (e.g., SIMBAD, Gaia) do not store the positional data
of specific constellations–rather, each archive is an enormous repository of
stars, exoplanets, galaxies, and other celestial objects, and without the nec-
essary background knowledge and astronomy expertise, it would have been
extremely difficult to correctly sort and group all the celestial data by con-
stellation. Ultimately, we identified Wikipedia as a primary data source
due to its extensive and publicly accessible repository of astronomical data.
Wikipedia specifically provides detailed pages for each of the main 88 con-
stellations, where each page consists of list of the constellation’s constituent
stars and their celestial coordinates (right ascension and declination) and
distance from Earth (in light years), among other parameters.

Instead of manually saving the data from Wikipedia for all 88 constel-
lations, we automated the process of data collection by developing a web
scraper script using libraries such as requests for handling HTTP requests
and BeautifulSoup for parsing HTML content. The script systematically
visits each constellation’s Wikipedia page and extracted relevant data, in-
cluding star names and their positional data, including their celestial coor-
dinates (right ascension and declination) and distance from Earth.

The format of the JSON file generated from this initial data scrape is:

1 {

2 "Constellation_1 ": {

3 "Star_1 ": [

4 <right_ascension >,

5 <declination >,

6 <distance

4

7], ...

8 }, ...

9 }

Where the right ascension is given in terms of hours, minutes, and seconds;
the declination is given in terms of degrees, minutes, and seconds, and the
distance from Earth is given as the number of light years.

Below is a snippet of the JSON file generated from the initial scrape:

1 {

2 "Andromeda ": {

3 "Alpheratz ": [

4 "00 h08m23 .17s",

5 "+29\ u00b0\u00a005\u2032\u00a027 .0\ u2033",

6 "97"

7],

8 "HD 14622": [

9 "02 h22m50 .36s",

10 "+41\ u00b0\u00a023\u2032\u00a047 .5\ u2033",

11 "154"

12], ...

13 }, ...

14 "Canis Major": {

15 "SiriusA , B": [

16 "06 h45m09 .25s",

17 "\ u221216\u00b0\u00a042\u2032\u00a047 .3\ u2033",

18 "8.6"

19], ...

20 }, ...

21 }

2.2.2 Preprocessing and Parsing

From the JSON file snippet provided above, it’s clearly apparent that the
constellation data we collected using our web scraper script is muddled with
irregular formatting and Unicode characters. Given these data inconsis-
tencies, we implemented parsing logic to standardize the data format. This
specifically included handling Unicode symbols for right ascension (RA) and
declination (Dec) values to separate each string into individual numerical
parameters, allowing us to converting our constellation data into a uniform
representation of hours, minutes, and seconds for RA, and degrees, minutes,
and seconds (with appropriate signs) for Dec.

Below is a snippet of the resulting JSON after parsing the initial data:

1 {

2 "Andromeda ": {

5

3 "Alpheratz ": {

4 "ra_hours ": 0.0,

5 "ra_minutes ": 8.0,

6 "ra_seconds ": 23.17 ,

7 "dec_degrees ": 29.0,

8 "dec_minutes ": 5.0,

9 "dec_seconds ": 27.0,

10 "lr": 97.0

11 }, ...

12 }, ...

13 "Canis Major": {

14 "SiriusA , B": {

15 "ra_hours ": 6.0,

16 "ra_minutes ": 45.0,

17 "ra_seconds ": 9.25,

18 "dec_degrees ": -16.0,

19 "dec_minutes ": 42.0,

20 "dec_seconds ": 47.3,

21 "lr": 8.6

22 }, ...

23 }, ...

24 }

2.2.3 Conversion to Cartesian

The RA and Dec positional coordinates provide the position of stars on
the celestial sphere. While useful in an astronomical context, for the pur-
poses of our pattern recognition algorithm, it’s much more straightforward
to calculate distance in a Cartesian space. Thus, to utilize this data in
three-dimensional space analysis, we converted the RA and Dec of each star
into Cartesian coordinates (x, y, z). The conversion from celestial to Carte-
sian coordinates involved astronomical calculations, taking into account the
distance of each star from Earth.

The conversion equations are provided below, where α = RA and δ =
Dec:

A = (15 · αhrs) + (0.25 · αmin) + (0.004166 · αsec) (1)

B = sign(δdeg) · (|(δdeg|+
δmin

60
+

δsec
3600

) (2)

C = distance in light years (3)

6

And thus, our 3D Cartesian coordinates are calculated as follows:

(X,Y, Z) =

X = C cosB · cos(A)

Y = C cosB · sin(A)

Z = C sinB

(4)

The final converted dataset, now containing all the stars per constellation
with their Cartesian coordinates, was saved in a JSON file. This format
was chosen for its balance of readability and structural integrity, and can be
easily parsed by Haskell using the built-in Data.aeson library. A snippet of
our final dataset is provided below:

1 {

2 "Andromeda ": {

3 "Alpheratz ": [

4 -66.37885122910839 ,

5 -2.4299721007308706 ,

6 -70.68906100022524

7], ...

8 }, ...

9 "Canis Major": {

10 "SiriusA , B": [

11 -1.6123346927655797 ,

12 8.077357938719077 ,

13 -2.473189351488567

14], ...

15 }, ...

16 }

3 Technical Details

3.1 Bringer and Despiegel (BD) Algorithm Implementation

3.1.1 Defining Stars and Vicinities

We implemented Bringer and Despiegel (BD) Algorithm [2, 4] to handle the
constellation data and pattern match the user input point constellation to
the database. Here, each star is given in a Cartesian coordinate (x, y, z).
Instead of comparing each star to star to compare two distinct constellations,
sets of stars are organized into groups called ”vicinities,” denoted as Vi.
A vicnity Vi comprises a central star mi and k-nearest neighboring stars.
When each vicinity is compared, each star’s relative position is compared in
terms of their distance and their relative angle. This comparison is further

7

discussed in the next section. This approach naturally circumvents issues
related to rotation and translation.

3.1.2 Vicinity Comparison

After defining the vicinity, rather than seeing a constellation M as a collec-
tion of stars, it can be viewed as a collection of vicinities. If M comprises
n stars, it will similarly yield n vicinities. To compare two such vicinities,
labeled as A and B (each containing the stars ai and bj respectively), we’ll
compare the ais to the bjs in pairs. For every comparison between ai and
bj , a matching score is calculated using a simplified scoring formula.:

s(ai, bj) = (xai − xbj)
2 + (yai − ybj)

2 + (zai − zbj)
2 +

σx
σy

(θai − θbj)
2 (5)

where θ is an angle between the z-axis and a line connecting the star and
the origin, σx represents the variance of the position (we assume that σx =
σy), and σθ is the variance of the angle (orientation). σ values are deter-
mined experimentally depends on the database. For a pair of vicinities, since
each vicinity contain k stars, a k x k matrix is constructed from the scores
calculated from each pair of stars. Then the association score is calculated
by Hungarian algorithm [3]. Here, the Hungarian algorithm is commonly
used method to find the optimal assignment (or association) between two
sets of equal size, minimizing the total cost (here, a score calculated from
5). This association score tells us the association between two vicinities.

3.1.3 Reference Star Set

To compare the input stars with each constellation in the database in con-
sistent manner, it is necessary to give each constellation a metric to be com-
pared with that of the input. If we directly calculate the association score
for each vicinities in the input and in each constellation of the database,
each vicinity in one constellation become independent, therefore we cannot
consider the complete shape of the constellation. Thus, it is necessary to
treat each vicinity association score as a ”potential” (as in physics) and ag-
gregate all vicinity scores of one constellation together to give one compact
metric.

To allow the vicinity association score to be treated as a ”potential,” we
need a reference star set. Here, the reference star set needs to be a discrete
constellation (or a random set of stars) that is not included in the database
to search for the pattern. In our implementation, ”Triangulum” is chosen
to be the reference star set and is excluded from the database.

8

3.1.4 Binary Feature Vector

To obtain a single metric for the input and each constellation in the database,
the Binary Feature Vector is constructed. The vector V , of length N ,
representing the input is computed as follows:

• Extract all the vicinities (denoted Fj) from the input stars.

• For 1 ≤ i ≤ N compute the vicinity association scores S(Fj , Ri) where
Ri is i-th vicinity in the reference star set.

• Given a certain threshold t, create the vector V, such that

Vi =

{
1 if ∃j ∈ {1, . . . , n} such that S(Fj , Ri) < t

0 otherwise
(6)

Now this binary feature vector can be viewed as a metric for each set
of stars or a constellation, and the comparison between two binary feature
vector is done by calculating the Hamming Distance. A constellation from
the database that has the shortest Hamming Distance from the input star
set is regarded as a match.

3.2 Parallelization Implementation

The core of this project is to calculate the binary feature vector for every
constellation in the database and compare it to that of the input. Therefore,
the computations for each constellation are not only the same, but also
independent of each other. The code snippet for parallelizaion is in the
main function as following:

1 binaryVectors = parMap rdeepseq (\(n, stars) →
2 (n, createBinaryVector stars refVicinities k sigX

3 sigTheta t)) templateFingerprints

4

5 hammingDistances = parMap rdeepseq (\(n, templateVector) →
6 (n, hammingDistance templateVector

7 candidateBinaryVector)) binaryVectors

The parallel nature of the code is facilitated by the parMap function
from the Control.Parallel.Strategies module. Firstly, parMap is used to dis-
patch the parallel execution of binary feature vectors. The use of rdeepseq
ensures a deep evaluation of the result, allowing parallel execution of the
createBinaryVector function for different elements. The function provided

9

to parMap takes a tuple (n, stars) from the database and computes create-
BinaryVector. The tuple represents each constellation with its name and
the minutae that belong to it. The lamda function helps to map the name
of the constellation to its calculated binary feature vector, allowing further
computation.

Similarly, we can also calculate the hamming distances between each con-
stellation’s bianry feature vector and that of the input on a per constellation
basis. The results are a list of tuples, including the name of the constellation
and the numerical result, which is going to be sorted and output.

4 Experiments

To further understand parallelization in this program, we aim to investigate
the relationship between the number of processing cores and the resulting
speedup. By using threadscope, we can acquire data about time usage and
compare real data to our expectation. Then, we will make sense of why or
why not does the actual speedup follow our theory.

4.1 Setup

Due to the limitation of threadscope, we could not experiment on large
inputs, as the eventlog file could be too big for threadscope to open and
analyze. Therefore, we chose k = 15, with the stars of Andromeda as input.
We run the experiment on an apple M1 chip with 8 cores available. It is
worth noting that for apple M1 chip, each core is single-threaded. Therefore,
we only ran the experiment up to 8 cores.

4.2 Experiment: parallelization speed up

Using the same input as experiment 2, we used commands

1 ghc -threaded -eventlog -rtsopts --make parse.hs

2

3 ./ parse +RTS -ls -N4

to record the time and eventlog for the same program under the same
inputs with different number of cores. The results are shown in the table

10

Figure 1: runtume vs number of cores

From the graph, we can see that from 1 core to 3 cores, there is an almost
linear speed up. From 3 to 6 cores, the speedup is still linear but relatively
smaller thn that of the first 3 cores. Then it plateaus until 8 cores.

Figure 2: Speedup result

For the first part of the graph, using 2 cores have an almost ideal speedup,
meaning that the speedup is almost the same as the number of cores we have.

11

Then, the speed up slowed down, which is expected in real life scenarios,
as pointed out by Amdahl’s Law that the bottleneck for speedup lies in
the sequential part of the code. Additionally, the speedup plateaus after
6 cores, which actually contradicts our assumption that speed up should
only stop after hitting the number of available cores for this machine. After
further research, we found out that for the M1 chip we were utilizing, 6 out
of the 8 cores are ”performance cores” while the other two are ”efficiency
cores”. Efficiency cores are optimized differently from its counterpart, thus
creating an asymmetric multiprocessing systems causing different behaviors
than expected after 6 cores [1].

5 Conclusions

Throughout this project, we have learned about fingerprint pattern match-
ing, which is widely adopted for its reliability, uniqueness, and ease of use.
It plays a vital role in enhancing security and providing seamless user au-
thentication in a variety of applications.

Our exploration of parallelization in Haskell has provided valuable in-
sights into leveraging concurrent processing for improved computational ef-
ficiency. In the realm of functional programming, Haskell’s purity and lazi-
ness present unique opportunities for parallelism. Harnessing these features
alongside parallelization strategies opens doors to building efficient and scal-
able applications. Understanding the nuances of parallel programming in
Haskell is crucial for optimizing performance.

Experimentation with different core configurations using the allows us to
observe the effects of parallelism on execution time and tailor our approach
to achieve optimal results. Reasoning behind the speedup curve gave us
a better understanding of differences between symmetric and asymmetric
systems, and the variance between ideal and factual parallization.

References

[1] Optimize for apple silicon with performance and efficiency cores.

[2] Despiegel Julian Bringer, Vincent. Binary feature vector fingerprint rep-
resentation from minutiae vicinities.

[3] Harold Kuhn. The hungarian method for the assignment problem.

12

[4] Hervé Chabanne Robin Champenois Jérémie Clément1 Houda Fer-
radi Marc Heinrich Paul Melotti David Naccache Antoine Voizard
Thomas Bourgeat, Julien Bringer. New algorithmic approaches to point
constellation recognition.

6 Appendix

6.1 Threadscope eventlog output

Figure 3: threadscope result for 1 core

Figure 4: threadscope result for 2 cores

13

Figure 5: threadscope result for 4 cores

Figure 6: threadscope result for 8 cores

14

