
PokerEquity

Brendan Fay and Lance Wong

December 2023

1 Introduction

We built a Poker Equity Calculator using the Monte Carlo method. The calculator is composed of two parts: the
hand evaluator and the simulator. The hand evaluator uses a frequency calculator and pattern matching. There
are more sophisticated implementations using lookup tables that are pretty exhaustive and very efficient, but our
implementation is much more elegant. I have included segments from our code below; the implementation is accurate
and the operations are not computationally expensive.

2 Implementation

We included Card, Hand, Rank, Suit, and HandRank algebraic data types. Card is composed of Suit and Rank,
which are both ordinal and bounded. HandRank is also an ordinal data type which is ordered so that hands can be
compared. Hand is a type alias for a list of Cards.

The Ranking function returns a hand’s associated HandRank and the hand in increasing frequency-sorted order.
This will be useful for comparing hand strengths later. To determine HandRank, the Classify helper function (within
Ranking) does exhaustive pattern matching.

The share function takes in a list of poker hands and evaluates to a floating point number between zero and one,
inclusive. This number signifies the user’s share of the pot. The value is 1.0 if the user wins and 0.0 if the user does
not. In the case of a tie, the pot is divided.

The Shuffle function shuffles the deck with the Fisher-Yates algorithm, which is linear in the length of the deck.
The Deal function removes the two user cards from the deck, shuffles it, then deals the community cards and the
other player cards.

1



We evaluated our hands using a classification function, which pattern matches against the frequency of ranks in
the best hand available to a player.

In order to run the Monte Carlo simulations, we pre-compute random number generators from the System.Random
module with different seed values and run them each through one computation. The generators are used to shuffle
the deck. We accumulate the total for each computation and return the average.
We chose the non-IO Monad random number generator because it made parallelization much easier. If we had used
the IO Monad generator, the numbers that we generated would have been more random, in some sense. However,
we considered the ability to parallelize our work more important.

The computation of the Monte Carlo simulations, and specifically the list in the results variable, are what we are
attempting to parallelize. We also parallelized the computation of the generators, but that is not a huge asset to
our execution time. In our benchmarking, we generated 10,000 generators and computed one experiment with each
generator.

2



3 Parallel Computation

NOTE: All of the benchmarking that we did was of the individual functions, not the program as a whole.

Our sequential implementation takes about 1.7s to run a 10,000 experiment simulation. We can see a chart
showing the time-share of each function and sub-function below (this was generated using profiteur):

The labels are too small to read, but the boxes on the left side of the image represent the classify and ranking
functions, while the boxes on the right represent a melange of other functions.

The most important information here is that the random number generation does not take a very long amount
of time. We parallelized that aspect, but it did not contribute too much to our runtime improvements. Our major
speedups came from parallelizing the computations themselves.

Naive Parallelization:
The parallelization step here breaks up the experiments naively, sparking a thread for each experiment. This gave

a threefold speedup, profiling information is pictured below (in the interest of space, most of the HECs are going to
be omitted):

Threadscope shows that the activity in all of the cores is generally strong.
Chunked Parallelization:
The parallel step here breaks the experiments into chunks, and runs each of those chunks in parallel. This ran

a little faster, but activity was a little lower. When we enforced the strict evaluation of the chunks, the activity
increased to use more of the CPU. This caused a ten percent speedup over the naive version.

Threadscope shows similar activity to the previous method, with better activity overall. Originally, activity was
worse with this method. When we forced strict evaluation to WHNF in the parallel step using rseq, the activity
became better.

3



StdGen Splitting:
This parallelization method involved changing the way that we compute random numbers. Previously, we gener-

ated random numbers ahead of time. Our reasoning for this was that RNG would be less interesting to parallelize.
There exists a split function that takes one StdGen generator and returns two. This can be used to iterate random

number generation. We decided to use this to divide the work. We first split a random number generator. We then
spark a thread to evaluate a single experiment using rseq, and recurse on the rest of the experiments.

This produced a mild speedup, but not as much as either of the previous experiments. The profiling details are
pictured below:

The activity is very choppy. This ran in about 1.09s, compared to 1.7s for the sequential implementation and .4s
for the chunked implementation. It makes sense that the speedup would be slower, since a lot of the parallelism is
devoted to computing inexpensive operations like making random number generators.

Chunking StdGen Splitting:
We decided to break our recursion into chunks of ten experiments. We would strictly evaluate a chunk in parallel,

and spark a thread to recurse on it in parallel. This resulted in computations that took about .2 seconds on average.
This is nearly a tenfold speedup from our sequential implementation.

The profiling is included below:

4



Once again, the profiling is extremely choppy. I suspect that there may be some compiler optimization occurring
to cause this behavior. We have, at times, noticed fluctuations up to .2s with this implementation.

The activity with the recursive implementation is much less uniform than the parallel implementation. Also: the
answers we get are different. This is because the non-IO Monad bound StdGen type is deterministic, so splitting vs.
pre-computation is a very significant difference.

4 Conclusion

We tried four different methods of parallelization. Among the standard methods that were discussed in class, breaking
the list into chunks and running each chunk in parallel seems like the best strategy. This gave us the best use of the
CPU and the fastest run time.

We also tried an ad-hoc parallelism strategy by splitting random number generators as we go along. This was
slower than naive parallelism when done experiment-by-experiment, but was faster than chunked parallelism when
chunking. It is not obvious to us whether this has anything to do with the semantics of the split function, or whether
it is a genuine result.

Generally, we saw an increase in the number of cores result in faster execution times. This speedup became
somewhat negligible at around four cores. Pictured are the results of ten bench-markings at each level of granularity,
and the results are born out in the chart.

The below chart shows the recursive splitting behavior when we chunked the experiments. These results are a
little unusual and affirm some of our concerns about the legitimacy of this tenfold speedup. It seems like increasing
the number of cores generally led to a slight speedup, but all of the speeds were close enough to each other that
small differences look quite significant.

5



Pictured below are our overall execution times, measured with the -N flag.

6



5 Code

7



8



9



10



11


