
Columbia University Parallel Functional Programming - Fall 2023

ParaSet Final Report

Ellen Guo (ekg2134), Ryan Xu (rx2189), Cindy Zhu (cwz2102)

1 Introduction

Set® is a card game played with a deck of 81 unique cards. Each card has four properties:
color, shape, shading, and number of figures. Each property has three values as follows:

• Color: Red, Green, or Purple.

• Shape: Oval, Diamond, or Squiggle.

• Shading: Solid, Shaded, or Open.

• Number of Figures: One, Two, or Three.

A valid set consists of three cards where for each property, the cards must either all have
the same value or all different values.

To play the game, deal 12 cards. Any number of players try to find a valid set as fast as
they can; when they find it, the three cards are removed and new cards are added.

We focus on a generalized game of Set® by creating a game where C cards are dealt,
with p types of properties that each take on v possible values. Thus, the classic game of Set
uses C = 12, p = 4, and v = 3 (and has a deck of vp = 34 = 81 unique cards). A card c has
p properties, each of which we will denote as c[i] for 1 ≤ i ≤ p.

A valid set therefore consists of v cards c1, c2, . . . , cv such that for every property i, either
c1[i] = c2[i] = · · · = cv[i] or c1[i] ̸= c2[i] ̸= . . . ̸= cv[i].

The problem that we present is as follows: Given C distinct cards (having different
properties), determine all valid sets that can be made from a subset of the C
cards.

Figure 1: Examples of Sets and Non-Set. The first set (top left) has cards where the colors
are different, the shapes are different, and shadings are different, and the number of figures
is different. The second set (top right) has cards where the colors are the same, the shapes
are different, the shadings are different, and the number of figures is the same. The last set
is invalid because though the colors are the same, the shapes are different, and the number
of figures is the same, the shadings are wrong: two are solid, but one is shaded (so not all
the same or different).

1

2 Algorithmic Structure

Our algorithm across all variations takes the same basic structure. Our input is C unique
cards (in practice, we randomly generate these within our program as well, which is trivial
compared to the rest of the computation). Given these C cards, we first compute all
combinations

(
C

v−1

)
(we call each of these combinations a ”preSet”, for reasons which will

soon become apparent).
Then, for each preSet, we can compute whether a valid Set can be created as follows:

Notice that each preSet either cannot form a Set (it already violates the constraints of a Set)
or that it has one unique card that can be added to form a valid Set. If such a card exists,
check whether it exists within the cards that were dealt; if so, return the preSet combined
with the missing card as a valid set.

Finally, note that except where noted, cards are represented in code as a list of p Ints,
with each Int being the parameter’s value at that index.

It should be observed that this algorithm grows very quickly, to the order of
(

C
v−1

)
.

However, p has little effect on the runtime, and generally has more to do with how many
valid solutions there are. Due to these observations, we generally stuck to c = [150, 200], v
= 5 for testing (200 choose 5 = 2.5e9).

3 Algorithm 1

3.1 Sequential

In our baseline sequential implementation, we compute the permutations via recursive lists
and the Cons operator.

type Card = [Int]

generatePreSets :: Int -> [Card] -> [[Card]]

generatePreSets v = generatePreSets’ (v - 1)

where

generatePreSets’ 0 _ = [[]]

generatePreSets’ _ [] = []

generatePreSets’ n (x : xs) = map (x :)

(generatePreSets’ (n - 1) xs) ++ generatePreSets’ n xs

These preSets are then evaluated and combined into the final result. (The details of the
evaluation are not important, but it notably involves a set membership check. For the full
code, see the appendix.)

possibleSets :: [Card] -> Int -> [[Card]]

possibleSets dealtCards v =

let preSets = generatePreSets v dealtCards

in mapMaybe (getPossibleSet (Set.fromList dealtCards) v) preSets

These two sections of code are the focal points of our modification for parallelization.

2

3.2 Parallelization

We experimented with the parallelization of preset generation but had poor results similar
to the sequential algorithm. In particular, we were dealing with low productivity, with a
large percentage of time spent on garbage collection and low activity. Instead, we opted
to avoid parallelizing the generation of preSets and focus on their evaluation in our next
attempt. Here, we split the preSets into chunks of 10,000 and use one spark per chunk to
evaluate them in parallel. We tested some different chunk sizes from 1000 to 100,000 and
found that a chunk size of 10,000 provided the best speed up.

possibleSets :: [Card] -> Int -> [[Card]]

possibleSets dealtCards v =

let preSets = generatePreSets v dealtCards

preSetChunks = chunksOf 10000 preSets

in concat $ parMap rseq (mapMaybe

(getPossibleSet (Set.fromList dealtCards) v)) preSetChunks

3.3 Analysis

We ran our parallelization of Algorithm 1 with the default GHC settings and with garbage
collector configuration using GC flags, both of which resulted in speed-ups from the sequen-
tial method, with the GC flag parallelization resulting in the largest speedup. For the run
with the default GHC settings, Figure 2 left shows that the garbage collection was bad -
lots of the total time was spent on garbage collection. This is verified when we take a look
at the actual Threadscope run time breakdowns as well in Table 1, where we see that the
productivity for the parallel implementation with no GC flag went down compared to the
sequential productivity.

To address this garbage collection issue, we experimented with some GHC RTS options.
We used -H to provide a suggested heap size for the garbage collector and tested values
for -H from 0.5G to 8G. We found that -H2G, or a heap size of 2GB worked best for our
tests. These GC flags resulted in less interleaving garbage collection work, especially in
comparing the 2 parallel threadscopes in figure 2. We can also see that there is much higher
activity overall, indicating that the parallelization is working much better with the GC flag
as compared to without. This improvement from the GC flag allowed us to achieve a 2.16x
speed-up when compared to sequential algorithm 1. In addition, we can see in figure 3 that
when we increase the cores for the parallel with GC flag runs, we see a speed up of up to
2.86x compared to just 1 core.

Sequential Parallel no GC Flag Parallel with GC Flag
Total Time 10.50s 9.13s 4.86s
Mutator Time 8.35s 5.58s 3.84s
GC Time 2.15s 3.55s 1.02s
Productivity (mutator vs total) 79.5% 61.1% 79.1%

Table 1: Table comparing Threadscope stats for versions of Algorithm 1. All using C=150,
v=5, p=5, 8 cores.

3

Figure 2: Threadscope snapshots parallelizations of Algorithm 1. Left: without GC flag;
Right: GC flag -H2G

Figure 3: Average speedup for parallel implementation of Algorithm 1 using GC flag as a
function of increasing cores.

4 Algorithm 2

4.1 Sequential

As the original preSet generation algorithm was plagued by garbage collection (likely due
to the construction of large amounts of lists), we tried an alternative method without list
concatenation. This method generates all bitstrings of C bits where v − 1 bits are equal to
1; we then use this ”one-hot” bitstring to determine which cards to include in the preSet.

getBitstrings :: Int -> Int -> [Integer]

getBitstrings n k = takeWhile (< bit (n + 1)) $ iterate next (bit k - 1)

where

next x =

4

let smallest = x .&. negate x

ripple = x + smallest

new_smallest = ripple .&. negate ripple

in ripple .|. (((new_smallest ‘div‘ smallest) ‘shiftR‘ 1) - 1)

bitStringToPreset :: [Card] -> Integer -> [Card]

bitStringToPreset dealtCards bitstring =

[x | (x, i) <- zip dealtCards [0 ..], testBit bitstring i]

bitStringToMaybeSet :: [Card] -> Set Card -> Int -> Integer -> Maybe [Card]

bitStringToMaybeSet dealtCards dealtCardsSet v bitstring =

getPossibleSet dealtCardsSet v $ bitStringToPreset dealtCards bitstring

Then we can map bitStringToMaybeSet over all the bitstring encodings to get our valid
sets.

possibleSets :: [Card] -> Int -> [[Card]]

possibleSets dealtCards v =

let c = length dealtCards

in mapMaybe

(bitStringToMaybeSet dealtCards (Set.fromList dealtCards) v)

(getBitstrings c (v - 1))

4.2 Parallelization

This time, with less GC activity, the algorithm is more conducive to parallelization. It is
difficult to parallelize the generation of bitstrings with the new algorithm, but we can still
parallelize the evaluation of preSets through the same methods used before. First, we use
the ”chunking” method:

possibleSets :: [Card] -> Int -> [[Card]]

possibleSets dealtCards v =

let c = length dealtCards

bitStringChunks = chunksOf 5000 $ getBitstrings c (v - 1)

in concat $

parMap

rseq

(mapMaybe (bitStringToMaybeSet dealtCards (Set.fromList dealtCards) v))

bitStringChunks

We also tried employing parBuffer as well:

possibleSets :: [Card] -> Int -> [[Card]]

possibleSets dealtCards v =

let c = length dealtCards

in catMaybes

(map

(bitStringToMaybeSet dealtCards (Set.fromList dealtCards) v)

(getBitstrings c (v - 1))

‘using‘ parBuffer 5000 rseq

)

5

4.3 Analysis

Both parallelization algorithms were successful, getting 2.5x speedups compared to the raw
sequential algorithm, and 2.8x speedups for one core versus 8. Running the parallel code
on multiple cores, we see the results in Fig. 4: parallelization gains taper off after 4 cores,
most likely as overhead and garbage collection start to compromise concurrency and par-
allelization gains. Fig. 5 gives us some more insight: for chunking, we see higher activity,
but large segments of GC time, whereas for parBuffer, we don’t have as high activity, but
better distribution and less GC. This would make sense as chunking lists would force list
elements to be in WHNF early; and for parBuffer, perhaps each spark is simply not doing
enough work. This also lines up with the speedup graph, where we see that the chunking
implementation (which struggles with memory) performs better on less cores, perhaps due
to less memory pressure as there’s less copies of data structures when there’s less cores.

Figure 4: Average speedups for both parallel implementations of Algorithm 2 as a function
of increasing cores.

Figure 5: Threadscope snapshots of both parallelizations of Algorithm 2. Left: chunked
implementation (chunksize 5000); Right: with parBuffer size 5000.

6

(Another small thing to note is that though there isn’t any overflwo, there is some fizzling
and GC of the sparks in the parBuffer version , which makes sense since there’s a LOT of
sparks being created. However, proportional to the total number of sparks, the rate of fizzle
is only 0.25% and 1.5% GC’ed sparks, so we were pretty happy with the results.)

5 Conclusion

Overall, our first algorithm suffers from a high memory usage that leads to garbage collection
dominating the runtime of the parallelized versions, although parallelization is still capable
of creating significant improvements. Our second algorithm is slower, but it is lighter on
memory and can be readily parallelized. In both algorithms, parallelization leads to a
roughly 2.75x speedup for c, v, p = 150, 5, 5.

However, it should be noted that to achieve such a speedup for the first algorithm, the
heap size argument must be tuned for the parameters given, while the second algorithm
generally always achieves its speedup with more cores.

6 Usage

Usage: paraset [flags] <cards dealt> <number of values> <number of traits>

-s --silent Silences all output.

-d --deck Prints the deck generated.

-n --newline Prints each solution on a separate line.

-f --file= Optional filename containing dealt cards;

otherwise randomly generated

-r 42 --randseed=42 Sets the random seed used.

-v 6P --version=6P Sets the version used (latest = 6P).

Valid options: 6P, 6C, 6, 5, 4, 3, 2, 1

--help Print this help message

Note that the valid versions correspond as follows:

• 1: Sequential algorithm 1

• 2: Failed algorithm 1 parallelization

• 3: A1 Parallel preSet evaluation

• 4: (Failed) card data format experiment

• 5: Sequential algorithm 2

• 6: Naive parallelization of V5

• 6C: Chunked parallelization of V5

• 6P: ParBuf parallelization of V5

7

7 Sample input/output

$ stack exec -- paraset-exe -dn -v 5 -f "./test/sampleDeal.txt" 12 3 4 +RTS -N8

Dealt cards:

[[1,1,1,2],[1,2,1,1],[1,2,2,3],[1,2,3,2],[2,1,1,2],[2,1,2,2],[2,1,3,2],[2,2,2,1],

[2,2,2,3],[3,1,1,3],[3,3,3,1],[3,3,3,3]]

Solutions:

[[1,2,1,1],[1,2,2,3],[1,2,3,2]]

[[2,1,1,2],[2,1,2,2],[2,1,3,2]]

[[1,2,2,3],[2,1,1,2],[3,3,3,1]]

[[1,1,1,2],[2,2,2,3],[3,3,3,1]]

[[1,2,1,1],[2,1,2,2],[3,3,3,3]]

[[1,1,1,2],[2,2,2,1],[3,3,3,3]]

corresponds to the following deal and its solution (5 solutions are on the right hand side,
the 6th solution is among the selected cards):

where the cards are encoded as such (so the left-top-most card would be [3,3,3,1]):

Property Index Property Name Value 1 Value 2 Value 3
0 Color Red Green Purple
1 Shape Diamond Squiggle Oval
2 Fill Open Shaded Solid
3 Number 1 2 3

8 Code Listing

8.1 App/main.hs

module Main (main) where

import Control.DeepSeq (force)

import Control.Exception (IOException, catch, evaluate)

import Control.Monad (when)

import Data.List (sort)

import ParsetBase qualified

8

import System.Console.GetOpt

(ArgDescr (NoArg, ReqArg),

ArgOrder (RequireOrder),

OptDescr (..),

getOpt,

usageInfo,

)

import System.Environment (getArgs)

import System.Exit (ExitCode (ExitFailure), die, exitSuccess, exitWith)

import System.IO (hPutStrLn, stderr)

import System.Random (StdGen, getStdGen, mkStdGen)

import V1 qualified

import V2 qualified

import V3 qualified

import V4 qualified

import V5 qualified

import V6Chunks qualified as V6C

import V6Naive qualified as V6

import V6Parbuffer qualified as V6P

type Card = [Int]

data Options = Options

{ optSilent :: Bool,

optNewline :: Bool,

optDeck :: Bool,

optHelp :: Bool,

optUsePresetSeed :: Bool,

optRandSeed :: IO String,

optVersion :: IO String,

optDealtCardsFile :: Maybe String

}

startOptions :: Options

startOptions =

Options

{ optSilent = False,

optNewline = False,

optDeck = False,

optHelp = False,

optUsePresetSeed = False,

optRandSeed = return "42",

optVersion = return "6P",

optDealtCardsFile = Nothing

}

options :: [OptDescr (Options -> IO Options)]

options =

9

[Option

[’s’]

["silent"]

(NoArg (\opt -> return opt {optSilent = True}))

"Silences all output.",

Option

[’d’]

["deck"]

(NoArg (\opt -> return opt {optDeck = True}))

"Prints the deck generated.",

Option

[’n’]

["newline"]

(NoArg (\opt -> return opt {optNewline = True}))

"Prints each solution on a separate line.",

Option

[’f’]

["file"]

(ReqArg (\arg opt -> return opt {optDealtCardsFile = Just arg}) "")

"Optional filename containing dealt cards; otherwise randomly generated",

Option

[’r’]

["randseed"]

(ReqArg (\arg opt -> return opt {optUsePresetSeed = True, optRandSeed = return arg}) "42")

"Sets the random seed used.",

Option

[’v’]

["version"]

(ReqArg (\arg opt -> return opt {optVersion = return arg}) "6P")

"Sets the version used (latest = 6P). Valid options: 6P, 6C, 6, 5, 4, 3, 2, 1",

Option

[]

["help"]

(NoArg (\opt -> return opt {optHelp = True}))

"Print this help message"

]

getVersionResults :: Int -> Int -> Int -> StdGen -> [Card] -> String -> ([[Card]], [Card])

getVersionResults c v p g dealtCards version =

case version of

"6P" ->

(force $ V6P.possibleSets dealtCards v, dealtCards)

"6C" ->

(force $ V6C.possibleSets dealtCards v, dealtCards)

"6" ->

(force $ V6.possibleSets dealtCards v, dealtCards)

"5" ->

(force $ V5.possibleSets dealtCards v, dealtCards)

10

"4" ->

(force $ V4.possibleSets dealtCardsV4 v p, map (V4.generateCardFromIndex v p) dealtCardsV4)

where

dealtCardsV4 = V4.dealCardsRandom c v p g

"3" ->

(force $ V3.possibleSets dealtCards v, dealtCards)

"2" ->

(force $ V2.possibleSets dealtCards v, dealtCards)

"1" ->

(force $ V1.possibleSets dealtCards v, dealtCards)

_ -> error "Invalid version"

main :: IO ()

main = do

argv <- getArgs

case getOpt RequireOrder options argv of

(actions, params, []) ->

do

opts <- foldl (>>=) (return startOptions) actions

let Options

{ optSilent = silent,

optNewline = newline,

optDeck = deck,

optHelp = help,

optUsePresetSeed = presetSeed,

optRandSeed = seed,

optVersion = version

} = opts

when help $ do

hPutStrLn stderr (usageInfo usage options)

exitSuccess

case params of

[c, v, p] -> do

inputSeed <- seed

ver <- version

let presetG = mkStdGen $ read inputSeed

g <- if presetSeed then return presetG else getStdGen

dealtCards <- case optDealtCardsFile opts of

Just filename -> do

contents <- catch (readFile filename) handleReadFileError

let parsedContents = reads contents :: [([Card], String)]

if null parsedContents

then handleParseError

else return $ sort $ fst $ head parsedContents

Nothing -> return $ ParsetBase.dealCardsRandom (read c) (read v) (read p) g

let (res, dealtCardsAsCards) = getVersionResults (read c) (read v) (read p) g dealtCards ver

11

evalRes <- evaluate res

when silent exitSuccess

when deck $ do

putStrLn "Dealt cards:"

print dealtCardsAsCards

putStrLn "Solutions:"

if newline

then mapM_ print evalRes

else print res

_ -> die $ usageInfo usage options

(_, _, errs) -> do

hPutStrLn stderr (concat errs ++ usageInfo usage options)

exitWith (ExitFailure 1)

where

usage = "Usage: paraset [flags] <cards dealt> <number of values> <number of traits>"

handleReadFileError :: IOException -> IO String

handleReadFileError _ = do

putStrLn "Error: Could not read the file."

exitWith (ExitFailure 1)

handleParseError :: IO [Card]

handleParseError = do

putStrLn "Error: File contents cannot be parsed as Cards. See test/sampleDeal.txt for an example."

exitWith (ExitFailure 1)

8.2 Src/V3.hs

module V3

(dealCardsRandom,

possibleSets,

)

where

import Control.Parallel.Strategies (parMap, rseq)

import Data.List (sort)

import Data.List.Split (chunksOf)

import Data.Map qualified as Map

import Data.Maybe (mapMaybe)

import Data.Set (Set)

import Data.Set qualified as Set

import System.Random (Random (randomR), StdGen)

{-

cards are represented as lists, where the index represents the trait, and

c[i] represents the value of trait i

-}

type Card = [Int]

12

{-

main function: given parameters

C: number of cards dealt,

v: number of values per trait,

p: number of traits

g: a random number generator

-}

possibleSets :: [Card] -> Int -> [[Card]]

possibleSets dealtCards v =

let preSets = generatePreSets v dealtCards

preSetChunks = chunksOf 10000 preSets

in concat $

parMap

rseq

(mapMaybe (getPossibleSet (Set.fromList dealtCards) v))

preSetChunks

{-

We generate c randomly dealt cards through generating random "swaps".

The initial "deck" consists of all cards in sorted order (here, each card

is represented as a single integer from 0 to v^p - 1, instead of its constituent parts.)

Then we generate c "swaps", where for each of the first c positions in the deck,

we swap the card with any subsequent card in the deck. After performing all swaps, we

return the first c cards in the deck.

This approach is inspired by https://wiki.haskell.org/Random_shuffle

(Drawing without replacement).

-}

-- This generates all c swaps.

constructRandomList :: Int -> Int -> Int -> Int -> StdGen -> [(Int, Int)]

constructRandomList c v p sofar gen

| c == sofar = []

| otherwise =

(sofar, num) : constructRandomList c v p (sofar + 1) newGen

where

(num, newGen) = randomR (sofar, v ^ p - 1) gen

-- This performs all swaps and constructs the list of returned cards.

constructCards :: Int -> Int -> Int -> [(Int, Int)] -> Map.Map Int Int -> [Card]

constructCards _ _ _ [] _ = []

constructCards c v p ((cardPosition, cardIndex) : nextCards) foundNums =

generateCardFromIndex v p cardInSwapPos : nextCardList

where

cardInCurrentPos = Map.findWithDefault cardPosition cardPosition foundNums

cardInSwapPos = Map.findWithDefault cardIndex cardIndex foundNums

nextCardList = constructCards c v p nextCards

13

(Map.insert cardIndex cardInCurrentPos foundNums)

-- This transforms the card from its index into its list form.

generateCardFromIndex :: Int -> Int -> Int -> Card

generateCardFromIndex _ 0 _ = []

generateCardFromIndex v remainingP index =

remIndex + 1 : generateCardFromIndex v (remainingP - 1) num

where

(num, remIndex) = quotRem index v

dealCardsRandom :: Int -> Int -> Int -> StdGen -> [Card]

dealCardsRandom c v p g =

sort $ constructCards c v p (constructRandomList c v p 0 g) Map.empty

{-

https://stackoverflow.com/questions/52602474/function-to-generate-the-unique-combinations-of-a-list-in-haskell

faster ones here https://stackoverflow.com/questions/26727673/haskell-comparison-of-techniques-for-generating-combinations

are not great bc ‘subsequences‘ can get really huge if ‘length dealtCards‘ is large

-}

generatePreSets :: Int -> [Card] -> [[Card]]

generatePreSets v = generatePreSets’ (v - 1)

where

generatePreSets’ 0 _ = [[]]

generatePreSets’ _ [] = []

generatePreSets’ n (x : xs) =

map

(x :)

(generatePreSets’ (n - 1) xs)

++ generatePreSets’ n xs

{-

checks if a valid, correctly ordered set is possible

-}

getPossibleSet :: Set Card -> Int -> [Card] -> Maybe [Card]

getPossibleSet dealtCards v preSet =

case getMissingCard preSet v of

Nothing -> Nothing

Just missingCard ->

if Set.member missingCard dealtCards && missingCard < head preSet

then Just $ missingCard : preSet

else Nothing

getMissingValue :: Int -> [Int] -> Maybe Int

getMissingValue v values

| Map.size m == 1 = Just $ head values

| all eqOne (Map.elems m) = Just $ (v * (v + 1) ‘div‘ 2) - sum (Map.keys m)

| otherwise = Nothing

where

14

eqOne :: Int -> Bool

eqOne = (== 1)

m = Map.fromListWith (+) [(val, 1) | val <- values]

getMissingCard :: [Card] -> Int -> Maybe Card

getMissingCard preSet v =

mapM (getMissingValue v) transposedList

where

transpose :: [[a]] -> [[a]]

transpose ([] : _) = []

transpose x = map head x : transpose (map tail x)

transposedList = transpose preSet

-- https://stackoverflow.com/questions/2578930/understanding-this-matrix-transposition-function-in-haskell

9 References

https://pbg.cs.illinois.edu/papers/set.pdf
SET Family Game on Amazon

15

https://pbg.cs.illinois.edu/papers/set.pdf
https://www.amazon.com/SET-Family-Game-Visual-Perception/dp/B00000IV34/ref=sr_1_2?crid=2U66SOCCI7LD6&keywords=set+game&qid=1700266712&sprefix=set+gam%2Caps%2C103&sr=8-2

	Introduction
	Algorithmic Structure
	Algorithm 1
	Sequential
	Parallelization
	Analysis

	Algorithm 2
	Sequential
	Parallelization
	Analysis

	Conclusion
	Usage
	Sample input/output
	Code Listing
	App/main.hs
	Src/V3.hs

	References

