
Parallelized Procedural Terrain Generation

Divjot Bedi, dsb2177

Overview

This project plans to deal with procedural terrain generation. In the realm of computer

graphics and algorithmic design, the creation of realistic and varied digital landscapes is

captivating and challenging. Taking on this problem, I aim to develop a system capable

of generating large-scale, complex terrains through procedural algorithms, leveraging

the power of parallel computing. At its core, the problem involves generating random

numbers, taking their dot products, smoothing them out, and then combining this with

some sort of heatmap rendering function (thresholding, further smoothing via kernel

convolution, etc). What really constitutes a better terrain is sort of “subjective” but

different methods yield unique results. At a glance, my project stands at the intersection

of art and technology--combining aesthetics with advanced computational techniques.

Approach

The core of the project revolves around the implementation of procedural generation

algorithms. These algorithms, based on mathematical formulas and noise functions like

Perlin noise and Voronoi noise, will be used to craft various terrain features. The

procedural nature of these algorithms makes them inherently suitable for

parallelization, as different sections of the terrain can be generated independently yet

cohesively.

Perlin Noise

Perlin noise, a method often used in computer graphics, can be implemented in various

dimensions, typically two, three, or four. The process generally involves three key steps:

1. Defining a Grid of Random Gradient Vectors: This step involves setting up a grid

where each point on the grid is assigned a random gradient vector.

2. Computing the Dot Product: For each point where noise needs to be calculated,

the dot product is computed between the gradient vectors and their respective

offsets (differences between the grid points and the point of interest).

3. Interpolation: Finally, the values obtained from the dot products are interpolated

to smooth out the noise, creating a more natural and continuous variation in the

noise pattern.

⇒ ⇒

Voronoi Biomes

Another method commonly used in generating landscapes is the Voronoi

algorithm/Worley Noise. Voronoi noise, a form of procedural noise, is generated by first

dividing space into cells and assigning each cell a random point. The pattern is based on

the proximity to the closest point. This process involves flooring input values to define

cells, generating random positions within each cell, and calculating distances from these

points. The shader-based implementation involves two key steps: finding the closest cell

point and determining the nearest edge distance. This technique is used to create varied

visual effects, including colorful patterns and cell borders. For more in-depth

information and code examples, please refer to Ronja's tutorial on Voronoi Noise here.

Voronoi noise can be used to generate biomes for terrain, and allows one to randomly

split the terrain into triangles. These triangles can then be enumerated and/or colored

to indicate the chosen biome.

Example voronoi_biomes.png output from my code Wikipedia

Implementation

Perlin Noise Generation

In the sequential approach for Perlin noise generation, the Haskell code defines a

function that iterates over a two-dimensional grid. Each grid point computes its noise

value using the perlin function, which generates smooth, coherent noise patterns. This

process is inherently linear, with each point's noise value calculated independently and

sequentially.

https://www.ronja-tutorials.com/post/028-voronoi-noise/
https://en.wikipedia.org/wiki/Worley_noise#:~:text=Worley%20noise%20is%20used%20to%20create%20procedural%20textures.&text=Worley%20noise%20of%20Euclidean%20distance,the%20location%20of%20the%20seeds.

Parallelizing Perlin noise generation in Haskell involves leveraging concurrency

primitives like parMap and rdeepseq. The parMap function allows simultaneous

computation across different segments of the grid, significantly accelerating the process.

The use of rdeepseq ensures complete evaluation of noise values in parallel threads,

avoiding lazy evaluation pitfalls common in Haskell.

Code snippet

module Terrain where

import Data.List (find)

import Numeric.Noise.Perlin

import Codec.Picture

import Control.Parallel.Strategies (parMap, rdeepseq)

-- Heatmap rendering function

heatmap :: [(Double, PixelRGB8)] -> Double -> PixelRGB8

heatmap thresholds value = case find match thresholds of

Just (_, colour) -> colour

Nothing -> PixelRGB8 0 0 0

where

match (threshold, _) = value > threshold

-- Generate Perlin noise

-- generateNoise :: Int -> Int -> Perlin -> [[Double]]

-- generateNoise width height noise = parMap rdeepseq (map noiseFn) coords

-- where

-- coords = [[(x, y) | x <- [0..width-1]] | y <- [0..height-1]]

-- noiseFn (x, y) = noiseValue noise (fromIntegral x, fromIntegral y, 0)

-- Generate Perlin noise

-- Splitting into chunks to parallelize even better?

generateNoise :: Int -> Int -> Perlin -> [[Double]]

generateNoise width height noise = parMap rdeepseq processChunk chunks

where

coords = [[(x, y) | x <- [0..width-1]] | y <- [0..height-1]]

chunks = chunkList numChunks coords

numChunks = 4 -- or any number depending on your parallelization needs

processChunk = concatMap (map noiseFn)

noiseFn (x, y) = noiseValue noise (fromIntegral x, fromIntegral y, 0)

-- Function to split a list into n chunks

chunkList :: Int -> [a] -> [[a]]

chunkList n xs = go n (length xs) xs

where

go _ _ [] = []

go k l ys = let size = (l + k - 1) `div` k

in take size ys : go (k-1) (l-size) (drop size ys)

-- Parallel version with convoluted smoothing

generateSmoothNoise :: Int -> Int -> Int -> Perlin -> [[Double]]

generateSmoothNoise width height iterations noise = iterateSmooth iterations initialNoise

where

initialNoise = generateNoiseSeq width height noise

iterateSmooth 0 noiseData = noiseData

iterateSmooth n noiseData = iterateSmooth (n - 1) (parMap rdeepseq (map (smoothNoise

width height)) coords)

where

coords = [[(x, y) | x <- [0..width-1]] | y <- [0..height-1]]

smoothNoise w h (x, y) = averageSurroundingNoise x y noiseData width height

averageSurroundingNoise :: Int -> Int -> [[Double]] -> Int -> Int -> Double

averageSurroundingNoise x y noiseData width height = let

points = [(dx, dy) | dx <- [-1..1], dy <- [-1..1], inBounds (x + dx) (y + dy) width

height]

total = sum [noiseData !! (y + dy) !! (x + dx) | (dx, dy) <- points]

avg = total / fromIntegral (length points)

in avg

inBounds :: Int -> Int -> Int -> Int -> Bool

inBounds x y width height = x >= 0 && y >= 0 && x < width && y < height

generateSmoothNoiseSeq :: Int -> Int -> Int -> Perlin -> [[Double]]

generateSmoothNoiseSeq width height iterations noise = iterateSmooth iterations initialNoise

where

initialNoise = generateNoiseSeq width height noise

iterateSmooth 0 noiseData = noiseData

iterateSmooth n noiseData = iterateSmooth (n - 1) (map (map (smoothNoise width height))

coords)

where

coords = [[(x, y) | x <- [0..width-1]] | y <- [0..height-1]]

smoothNoise w h (x, y) = averageSurroundingNoise x y noiseData width height

generateNoiseSeq :: Int -> Int -> Perlin -> [[Double]]

generateNoiseSeq width height noise = map (map noiseFn) coords

where

coords = [[(x, y) | x <- [0..width-1]] | y <- [0..height-1]]

noiseFn (x, y) = noiseValue noise (fromIntegral x, fromIntegral y, 0)

-- Render heatmap from noise

renderHeatMap :: Int -> Int -> [[Double]] -> Image PixelRGB8

renderHeatMap width height noiseData = generateImage pixelRenderer width height

where

pixelRenderer x y = heatmap thresholds (noiseData !! y !! x)

thresholds = [snow, mountains, forest, land, sand, shallowWater, depths]

snow = (0.85, PixelRGB8 255 255 255)

mountains = (0.5, PixelRGB8 200 200 200)

forest = (0.1, PixelRGB8 116 151 62)

land = (0, PixelRGB8 139 181 74)

sand = (-0.1, PixelRGB8 227 221 188)

shallowWater = (-2, PixelRGB8 156 213 226)

depths = (-25, PixelRGB8 74 138 125)

-- Add other thresholds here

Voronoi Biome Generation

For Voronoi biome generation, the sequential version calculates the closest seed point

for each pixel to assign a biome, a process that can be computationally intensive for

large images. The parallel version uses similar concurrency techniques to distribute the

computation across multiple cores.

The choice of parMap and rdeepseq in Haskell's parallel strategies is crucial for

achieving efficiency in computation. parMap enables dividing the problem into

sub-problems that can be solved in parallel, while rdeepseq ensures that these

computations are fully evaluated in parallel, leading to a more efficient use of system

resources and faster execution times. This approach significantly enhances

performance, especially for high-resolution terrain and biome generation tasks.

Code snippet

module Biome where

import Codec.Picture

import System.Random

import Data.List (minimumBy)

import Data.Ord (comparing)

import Control.Parallel.Strategies (parMap, rdeepseq, rpar, rseq, using, parList)

-- Define a biome and a seed data type

data Biome = Forest | Desert | Ocean deriving (Show, Eq, Enum, Bounded)

data Seed = Seed { seedX :: Int, seedY :: Int, seedBiome :: Biome } deriving (Show, Eq)

-- Generate a random list of seeds

generateSeeds :: Int -> Int -> Int -> IO [Seed]

generateSeeds numSeeds width height = do

gen <- newStdGen

let biomes = [minBound .. maxBound] :: [Biome]

biomeGen = randomRs (0, length biomes - 1) gen

(xGen, yGen) = split gen

xs = take numSeeds $ randomRs (0, width - 1) xGen

ys = take numSeeds $ randomRs (0, height - 1) yGen

biomeIndexes = take numSeeds biomeGen

return [Seed x y (biomes !! index) | (x, y, index) <- zip3 xs ys biomeIndexes]

-- Euclidean distance function

distance :: Seed -> Int -> Int -> Double

distance seed x y = sqrt $ fromIntegral ((x - seedX seed) ^ 2 + (y - seedY seed) ^ 2)

-- Function to render the Voronoi diagram

renderVoronoiSeq :: Int -> Int -> [Seed] -> Image PixelRGB8

renderVoronoiSeq width height seeds =

generateImage pixelRenderer width height

where

pixelRenderer x y = biomeToColor $ seedBiome $ closestSeed x y

closestSeed x y = minimumBy (comparing (\seed -> distance seed x y)) seeds

biomeToColor biome = case biome of

Forest -> PixelRGB8 0 255 0 -- Green

Desert -> PixelRGB8 255 255 0 -- Yellow

Ocean -> PixelRGB8 0 0 255 -- Blue

renderVoronoiPar :: Int -> Int -> [Seed] -> Image PixelRGB8

renderVoronoiPar width height seeds =

generateImageParallel pixelRenderer width height

where

pixelRenderer x y = biomeToColor $ seedBiome $ closestSeed x y

closestSeed x y = minimumBy (comparing (\seed -> distance seed x y)) seeds

biomeToColor biome = case biome of

Forest -> PixelRGB8 0 255 0 -- Green

Desert -> PixelRGB8 255 255 0 -- Yellow

Ocean -> PixelRGB8 0 0 255 -- Blue

generateImageParallel :: (Int -> Int -> PixelRGB8) -> Int -> Int -> Image PixelRGB8

generateImageParallel pixelFunc width height =

let rows = [[pixelFunc x y | x <- [0 .. width - 1]] | y <- [0 .. height - 1]]

parallelRows = rows `using` parList rseq

in generateImage (\x y -> (parallelRows !! y) !! x) width height

-- generateImageParallel :: Int -> Int -> (Int -> Int -> PixelRGB8) -> Image PixelRGB8

-- generateImageParallel width height pixelFunc =

-- let rows = [[pixelFunc x y | x <- [0 .. width - 1]] | y <- [0 .. height - 1]]

-- parallelRows = parMap rdeepseq id rows

-- in generateImage (\x y -> (parallelRows !! y) !! x) width height

Example PNG outputs:

Voronoi Noise→ 3 biomes: water, forest, Perlin noise→ 5 elevations: snow,

desert mountain, grass, sand, water, deep water.

Benchmarking

The Criterion Haskell library is employed to evaluate the performance of both sequential

and parallel implementations of terrain and Voronoi biome generation. Criterion

provides accurate and statistically robust measurements by running each benchmark

multiple times and calculating the mean and standard deviation of run times. This

method helps in mitigating the impact of anomalies and system-related noise, ensuring

the reliability of the results.

The methodology for benchmarking involves running each implementation (sequential

and parallel) under the same conditions and comparing their execution times. The key

metrics used for evaluation are the mean execution time and the standard deviation of

these times, providing insights into both the efficiency and consistency of the

implementations. As seen in the graph, the parallel implementation of terrain

generation shows a significant decrease in execution time compared to the sequential

version, demonstrating the effectiveness of parallelization. However, for Voronoi biome

generation, the execution times are similar for both implementations, suggesting that

the computational complexity or the data size may not sufficiently benefit from parallel

processing. This graph effectively illustrates how parallel processing can dramatically

enhance performance in certain scenarios, but its impact can vary depending on the

nature of the task

Benchmark Graph A

Appendix

Terminal output (used for Benchmark Graph A):

benchmarking Terrain Generation/Sequential

time 66.18 ns (65.70 ns .. 66.79 ns)

1.000 R² (0.999 R² .. 1.000 R²)

mean 66.73 ns (66.34 ns .. 67.33 ns)

std dev 1.607 ns (1.129 ns .. 2.597 ns)

variance introduced by outliers: 36% (moderately inflated)

benchmarking Terrain Generation/Parallel

time 3.674 μs (3.568 μs .. 3.909 μs)

0.974 R² (0.922 R² .. 1.000 R²)

mean 3.666 μs (3.574 μs .. 4.034 μs)

std dev 568.7 ns (24.85 ns .. 1.205 μs)

variance introduced by outliers: 95% (severely inflated)

benchmarking Voronoi Biome Generation/Sequential

time 8.859 μs (8.851 μs .. 8.870 μs)

1.000 R² (1.000 R² .. 1.000 R²)

mean 8.854 μs (8.839 μs .. 8.889 μs)

std dev 67.34 ns (46.06 ns .. 109.4 ns)

benchmarking Voronoi Biome Generation/Parallel

time 8.865 μs (8.859 μs .. 8.871 μs)

1.000 R² (1.000 R² .. 1.000 R²)

mean 8.857 μs (8.845 μs .. 8.878 μs)

std dev 48.33 ns (29.66 ns .. 82.78 ns)

Profiling information:

62,855,450,080 bytes allocated in the heap

127,307,744 bytes copied during GC

1,672,408 bytes maximum residency (142 sample(s))

728,640 bytes maximum slop

71 MiB total memory in use (0 MB lost due to

fragmentation)

Tot time (elapsed) Avg pause

Max pause

Gen 0 15917 colls, 15917 par 1.171s 1.023s 0.0001s

0.0027s

Gen 1 142 colls, 141 par 0.203s 0.125s 0.0009s

0.0173s

Parallel GC work balance: 35.47% (serial 0%, perfect 100%)

TASKS: 26 (1 bound, 25 peak workers (25 total), using -N12)

SPARKS: 8 (8 converted, 0 overflowed, 0 dud, 0 GC'd, 0 fizzled)

INIT time 0.001s (0.017s elapsed)

MUT time 21.594s (19.518s elapsed)

GC time 1.357s (1.111s elapsed)

RP time 0.000s (0.000s elapsed)

PROF time 0.017s (0.037s elapsed)

EXIT time 0.001s (0.001s elapsed)

Total time 22.970s (20.684s elapsed)

Alloc rate 2,910,774,195 bytes per MUT second

Productivity 94.1% of total user, 94.5% of total elapsed

References:

Here are the citations for the provided sources in APA format:

1. Wikipedia contributors. (n.d.). Perlin noise. Wikipedia. Retrieved December 20,

2023, from https://en.wikipedia.org/wiki/Perlin_noise

2. Hackage. (n.d.). hsnoise. Retrieved December 20, 2023, from

https://hackage.haskell.org/package/hsnoise

3. Wikipedia contributors. (n.d.). Simplex noise. Wikipedia. Retrieved December

20, 2023, from

https://en.wikipedia.org/wiki/Simplex_noise#:~:text=Simplex%20noise%20is%

20useful%20for,in%20large%20portions%20of%20space

4. Carnegie Mellon University. (n.d.). Terrain Generation. Retrieved December 20,

2023, from https://www.cs.cmu.edu/~112/notes/student-tp-guides/Terrain.pdf

5. Volkov, N. (n.d.). Profiling Cabal Projects. Retrieved December 20, 2023, from

https://nikita-volkov.github.io/profiling-cabal-projects/

https://en.wikipedia.org/wiki/Perlin_noise
https://hackage.haskell.org/package/hsnoise
https://en.wikipedia.org/wiki/Simplex_noise#:~:text=Simplex%20noise%20is%20useful%20for,in%20large%20portions%20of%20space
https://en.wikipedia.org/wiki/Simplex_noise#:~:text=Simplex%20noise%20is%20useful%20for,in%20large%20portions%20of%20space
https://www.cs.cmu.edu/~112/notes/student-tp-guides/Terrain.pdf
https://nikita-volkov.github.io/profiling-cabal-projects/

6. Wikipedia contributors. (n.d.). Worley noise. Wikipedia. Retrieved December 20,

2023, from

https://en.wikipedia.org/wiki/Worley_noise#:~:text=Worley%20noise%20is%2

0used%20to%20create%20procedural%20textures.&text=Worley%20noise%20o

f%20Euclidean%20distance,the%20location%20of%20the%20seeds.

7. Hackage. (n.d.). Criterion: A powerful but simple library for measuring software

performance. Retrieved December 20, 2023, from

https://hackage.haskell.org/package/criterion-1.6.3.0/docs/Criterion-Main.html

8. Ronja. (n.d.). Voronoi Noise. Ronja's Tutorials. Retrieved December 20, 2023,

from https://www.ronja-tutorials.com/post/028-voronoi-noise/

9. Jasper, J. (n.d.). Voronoi Noise. Catlike Coding. Retrieved December 20, 2023,

from

https://catlikecoding.com/unity/tutorials/pseudorandom-noise/voronoi-noise/

https://en.wikipedia.org/wiki/Worley_noise#:~:text=Worley%20noise%20is%20used%20to%20create%20procedural%20textures.&text=Worley%20noise%20of%20Euclidean%20distance,the%20location%20of%20the%20seeds
https://en.wikipedia.org/wiki/Worley_noise#:~:text=Worley%20noise%20is%20used%20to%20create%20procedural%20textures.&text=Worley%20noise%20of%20Euclidean%20distance,the%20location%20of%20the%20seeds
https://en.wikipedia.org/wiki/Worley_noise#:~:text=Worley%20noise%20is%20used%20to%20create%20procedural%20textures.&text=Worley%20noise%20of%20Euclidean%20distance,the%20location%20of%20the%20seeds
https://hackage.haskell.org/package/criterion-1.6.3.0/docs/Criterion-Main.html
https://www.ronja-tutorials.com/post/028-voronoi-noise/
https://catlikecoding.com/unity/tutorials/pseudorandom-noise/voronoi-noise/

