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Background

Problem
The Nearest Neighbors Search (NNS) algorithm is one of the most natural ML algorithms. The search
identifies a training data point that is closest to the desired point. Nearest Neighbor algorithms rely on
the underlying assumption that the nearest datapoint within the training set provides useful
information. NNS has been applied to problems such as data mining, recommendation systems,
pattern recognition, data compression, and databases [1] [2] [3] [6] [7].

More formally, we can define this problem for a metric space , which consists of a set of
points  and a distance metric . The distance metric must uphold the
triangle inequality  and symmetry , and it must
satisfy . With this, the nearest neighbor is defined as:

A very concrete example is given a set  of  vectors , we want to find the nearest vector to
 using the Euclidean distance. A naive way to do this would be to compute the Euclidean distance

for every vector in . This takes  time.

Problem Formulation
This runtime can pose a problem when considering a very computationally expensive distance metric

 that dominates other steps, such as the Euclidean distance for a huge vector. Additionally, data
structures such as  trees break down if the "points" exist in an exotic space that don't behave like

. An example of this is a set of vertices in a graph and the shortest-path.

The linear approximating and eliminating search algorithm (LAESA) algorithm [5] achieves 
distance computations and  time complexity (  is the time to calculate the distance
and doesn't grow with ). Another benefit is that it only requires loading  data into memory
outside of preprocessing, as we only need to load the data point for the distance computation.
However, a drawback is the linear preprocessing cost, which is  distance computations.
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The way we accomplish NNS is by eliminitating candidates by finding a lower bound for their
distance without explicitly computing the distance to a point , instead using preprocessed distances
[4]. We do this by using properties of the triangle inequality. Given a target , candidate , and an
active candidate  whose distance to  we know, the lower bound  is:

By symmetry:

For a visual representation where  is the target,  is the best match so far,  is the "active"
candidate, and  is another candidate being considered:

Once we have our lower bounds, we go through the lower bounds in ascending order and compute
the actual distance. Once the lower bounds of data exceeds the lowest distance so far, that means
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there's no way the subsequent data is better than what we've seen. This step should happen in a
constant number of comparisons.

How to Run

Download data
Download siftsmall.tar.gz (or any of the datasets) and create a directory called data with its contents.

Compile the Binaries
If you want to compile the binaries and run them,
run  stack --copy-bins --local-bin-path bin install , and it will create a bin folder locally

Use ThreadScope
Here's how to use ThreadScope to look at parallel performance (with mpar).
First, clone the ThreadScope repo. Then,

1.  cabal new-build --enable-profiling 
2.  NUM_TRAIN=2000 NUM_QUERY=50 NUM_BASES=50 cabal exec -- mpar +RTS -N -l -RTS , where -

N indicates the number of cores. Feel free to adjust NUM_TRAIN, NUM_QUERY, and
NUM_BASES.

3.  threadscope mpar.eventlog 

Experiments
We present a sequential LAESA and a parallel LAESA and compare them with respect to time using
siftsmall_base from the Approximate Nearest Neighbors datasets. We have benchmarked the
algorithm by selecting subsets of the dataset and by subsequent searches (exclusive of
preprocessing). The dataset we used consisted of 10k training, and 100 query vectors, both of which
are 128 dimensional. We validated our experimental results with our reference code found in
 python_ref.py  of our github.

All parameters of the parallelized algorithm (such as parBuffer sizes) were tuned on an M1 macbook
pro. Different machines and different tuning methods may yield better results.

First, we compared how increasing the number of cores affects run-time using the runtime flags
 +RTS -N${NUM_CORES} . We found that setting  -N6  had the best performance and saw diminishing
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returns from there on out on an 8 core macboook pro. Higher cores indicated diminishing returns,
likely from scheduling overhead. We conducted the subsequent following tests on 6 cores because
we saw diminishing returns after 6 cores.

Then, we compared the speed up across the number of training vectors. We looked at 20 values
linearly spaced range of [100, 5000] training vectors. We started at 100 because we need a decent
number of vectors to train LAESA, but stopped at 5000 because we didn't want the subsequent
steps to take too long. -sized training set was used with 250 basis vectors and 25 query vectorsn



Next, we compared the speed up across the number of query vectors (number of subsequent
searches). We looked at 20 groups of search vectors of sizes [1, 100]. We plot our results below. 
query vectors were used with 2000 training vectors and 250 basis vectors.
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Finally, we compared against the number of basis vectors, direct distance computation vectors. For a
metric space, these vectors are the most important for LAESA. We compared increasing and
decreasing the basis count at 20 values spaced evenly in [100, 1000] for a training set of 2000. We
stopped at 1000 because we didn't want  basis to approach  training size.  training vectors were
used with 2000 training vectors and 25 query vectors
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Total Runtime
On  -O2  optimization, the parallelized version of LAESA consistently outperforms the sequential
implementation of LAESA. Some exceptions to this are at very low sample sizes of training vectors,
because the overhead of creating new threads outweighs the computational benefit the thread would
provide.

Another interesting note is we had to strategically fine-tune our number of threads: spawning too
many lead to significant GC times due to there being too many threads for memory, meaning we had
to limit the number of spawned threads by tuning. In fact, earlier versions included a parallelized
euclidean distance that was removed since it was called semi-frequently and spawned too many
threads and caused too much overhead. The existing lazy implementation worked just fine
surprisingly.

Another thing of note is that the threaded applications have higher variance in their performance
graphs. That's because of the "non-deterministic" behavior of the scheduler.

Finally, the number of query experiment demonstrates the best scaling, likely because the prediction
is completely in parallel. Basis performed the worst because the basis training step is a greedy
algorithm and cannot be parallelized.



Threadscope Analysis
With two cores:

With four cores:



Notably, there appears to be 3 separate sections of the Threadscope graphs:

1. Dataloading, this step is indicated without parallelism
2. Training, this step has some parallelism but the greedy algorithm limits to what extend the

training is parallel. Thus, we see some parallelism in the multiple threads with interruptions to
sync up the greedy algorithm.

3. Predictions, We predict for approximately 25 vectors completely in parallel for all the threads.
This is the "extremely parallel" step noted in our presentation.

Reflection & Discussion

Challenges
We faced several challenges, including initially encountering a slower parallel LAESA runtime than
sequential LAESA. We resolved this by tuning the input parallelization parameters--knowing how
much parallelism is tricky (Parallel Euclidean distance). We also had issue loading a custom file
format and ultimately parsed the file successfully by using Data.Binary.Get. Lastly, we had some
trouble setting up ThreadScope, but was able to resolve this by cloning the binaries directly from the
ThreadScope repo (mentioned above).

Next Steps
We can implement a parallel K-Nearest Neighbors (KNN) LAESA algorithm. We also want to tune the
parameters more and include better tests for the performance of the algorithm. Lastly, we want to
parallelize the distance metrics.
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