
Implementing a Monte Carlo Simulation in Haskell

Griffin N (gcn2106) Anna C (ajc2321) Sparsh B (sb4835)

December 20, 2023

Contents

1 Introduction 2

2 Background 2
2.1 Mathematical Background . 2

2.1.1 Monte Carlo Method . 2
2.1.2 Options Pricing . 2
2.1.3 Probability Background . 2

2.2 Programming Background . 3

3 Sequential Implementation 4
3.1 Algorithm . 4
3.2 Performance . 6

4 Parallel Implementation 7
4.1 Algorithm . 7
4.2 Parallel Attempt 1 . 8
4.3 Parallel Attempt 2 . 9

4.3.1 Performance Compared to Sequential . 9
4.4 Parallel Attempt 3 (Final) . 10

4.4.1 Performance . 10
4.4.2 Performance Compared to Parallel Attempt 2 . 14

5 Bonus Implementation: Vector Operations 15
5.1 Sequential Algorithm . 15
5.2 Sequential Performance . 16
5.3 Parallel Algorithm . 16
5.4 Parallel Performance . 17
5.5 Potential Performance Enhancing Alternatives . 19

6 Conclusion: Putting it All Together 19

7 Haskell Code Reference 20

8 References 26

1

1 Introduction

For our project, we chose to implement a Monte Carlo simulation for Asian Options pricing in Haskell. There
are three ways in which we approached the coding to see which provides the best overall performance gain -
straightforward sequential programming, parallelising the sequential code, and, lastly, vectorizing the operations.
In the next sections we will provide the necessary background on Monte Carlo method and Options pricing and
then describe each implementation technique in detail.

2 Background

2.1 Mathematical Background

It is necessary to first establish the relevant mathematical context to the Monte Carlo method and how it applies
to finance. This is divided into three broad categories, the Monte Carlo method, Options pricing within Financial
markets, and Probability.

2.1.1 Monte Carlo Method

The Monte Carlo method is a broad class of algorithms that rely on repeated random sampling to obtain a numerical
result [6]. By leveraging randomness, it efficiently solves problems that might be deterministic in principle. This is
especially useful when there is no straightforward way to use the deterministic nature of the problem to solve it or
when using the deterministic nature raises the complexity of the solution.

2.1.2 Options Pricing

A Stock Option is the derivative of the stock and is based off the price of the stock over a given time period. For
the purpose of this project, we will consider the Asian option. the Asian call option pays off based on how much
the average stock price over the time period T exceeds the strike price K. If the average stock price is greater then,
the payoff is positive and equal to the difference. If the average stock price is less than or equal to K, then the
payoff is zero [5]. This feature makes Asian options particularly sensitive to the average behavior of the stock price
over time rather than its exact value at the expiration time.

Here’s a formula for computing the payoff for an Asian call option [3]:

CT =

(
1

T

T∑
i=1

Si −K

)+

- CT : The payoff of the Asian call option at time T .
- 1

T

∑T
i=1 Si: Average stock price over the time period from 1 → T .

-
(

1
T

∑T
i=1 Si −K

)+
: This ensures that the payoff is non-negative.

- Si = Si−1R: With R being u with probability p = (1+r−d)
(u−d) and d with probability 1− p

- u, d, and r are parameters to the function representing the up market multiplier, the down market multiplier,
and the risk free interest rate respectively.

There are many different types of options, beyond the Asian option - American and European options - with
the difference being when you are able to exercise the option and how the payoff is calculated (and not related to
geographic location). Since the Asian Call Option is one that does not have a closed form solution [3] but rather
relies on an average performance over a certain period, simulating the prices works really well for it. The Asian
call option differs from a standard call option in that its payoff is based on the average value of the stock over a
specified period (from time 1 to time T) rather than just the stock price at the expiration time.

2.1.3 Probability Background

The method of randomness for the application of Monte Carlo on the Asian option is controlled by a Bernoulli
Random variable. A Bernoulli Random Variable is a random variable that yields a success with a probability p and

2

a failure with a probability of 1 − p From this we can derive what the expected value of a Bernoulli is, we know
that the expected value of a random variable is defined as follows:

E[X] =

∞∑
x=0

P(X = x)x

So applying this to the Bernoulli we get:

E[X] = P(X = 0)0 + P(X = 1)1

E[X] = (1− p)0 + (p)1

E[X] = p

From this we can begin describing the role that the Law of Large Numbers plays in these simulations. We will
demonstrate this using the classic example of flipping a coin. If we flip a non biased coin a singular time the
percentage of flips that are heads are either 0% or 100% The percentage will change as we flip the coin more and
more times, why early results may very the more flips we do the closer we get to the expected value.

Figure 1: Image displaying the Law of Large Numbers

This example illustrates motivation for the Law of Large Numbers, which states that the result of performing the
same experiment a large number of times will have an average value that converges on the theoretical expected
value of the experiment.

2.2 Programming Background

Our Haskell implementation takes its roots from a sequential Python implementation that is assigned as a homework
problem to students enrolled in the economics context in COMS 1002: Computing in Context, solutions are provided
to the TAs of the course and since Griffin is a TA for that course, that is how we acquired the solutions. This
implementation serves as a baseline for the project and is considered a correct implementation meaning we would
know if our Haskell functions were accurate if they lined up well with the output of the python program.

def bernoulli(p):

if random.random() < p:

return True

else:

3

return False

def monte_carlo_asian_call(n, t, r, u, d, s_o, k):

discount = 1 / ((1 + r) ** t)

p_star = (1 + r - d) / (u - d)

total = 0

for i in range(n):

sum_prices = 0

price = s_o

for i in range(t):

if bernoulli(p_star):

price=price*u

else:

price=price*d

sum_prices += price

val = (sum_prices / t) - k

total += max(val, 0)

return (total * discount) / n

The implementation of the Bernoulli random variable, while naive, is quite standard. From the function imple-
menting the Monte Carlo we can see the mathematical formula play out as well. Two new parameters present are
n and s0 which represent the number of trials and the initial stock price. Knowing all of this we can move forward
with the Haskell Implementations.

3 Sequential Implementation

3.1 Algorithm

The sequential implementation of the Monte Carlo Asian option pricing algorithm in Haskell closely follows a Python
version distributed in an Economics course. The primary objective is to simulate the pricing of Asian options using
a Monte Carlo method, which involves generating random price paths for the underlying asset and computing the
corresponding option payoffs.

The main function, monteCarloAsian, accepts parameters such as the number of trials (n), the number of time
steps (t), the risk-free interest rate (r), the up movement factor (u), the down movement factor (d), the initial stock
price (s0), and the strike price (k). It performs a Monte Carlo simulation by generating random price paths for
the underlying asset, calculating the corresponding option payoffs, and then averaging the results over multiple trials.

monteCarloAsian :: Int -> Int -> Double -> Double -> Double -> Double -> Double -> IO Double

monteCarloAsian n t r u d s0 k = do

let discount = 1 / ((1 + r) ^ t)

-- implementation details

-- Perform 'n' trials and compute the average

total <- sum <$> replicateM n seqTrial

return $ (total * discount) / fromIntegral n

The simulation involves recursively calculating the sum of prices along a path in the financial market. This is
achieved through the seqTrial function, which uses a helper function seqCalcPrice to traverse the price path and
accumulate the sum.

-- ... (other code)

4

-- Perform a single trial of the simulation

let seqTrial = do

-- Recursively calculate the sum of prices along a path

let seqCalcPrice i sumPrices price

| i == t = return sumPrices

| otherwise = do

b <- bernoulli pStar

if b == 1

then seqCalcPrice (i + 1) (sumPrices + (price * u)) (price * u)

else seqCalcPrice (i + 1) (sumPrices + (price * d)) (price * d)

-- Calculate the difference between average simulate price and strike price

sumPrices <- seqCalcPrice 0 0.0 s0

let diffVal = (sumPrices / fromIntegral t) - k

return $ diffVal `max` 0

-- ... (other code)

To perform each step in each trial we use randomIO to get a random value between 0 and 1, which is used to
mimic the Bernoulli distribution

bernoulli :: Double -> IO Int

bernoulli p = do

randomVal <- randomIO -- :: IO Double

return $ if randomVal < p then 1 else 0

Within seqCalcPrice, random up or down movements are determined using a Bernoulli distribution. The
difference between the average simulated price and the strike price is then computed, and the option payoff is
calculated as the maximum of this difference and zero. The chart seen below shows our sequential implementation
run on different values of n, the number of Monte Carlo trials. The other values i the function were set at t = 10,
r = 0.05, u = 1.15, d = 1.01, s0 = 50, k = 70.

The function is run for different values of n 5 times. As seen in the scatter plot, the output of the program
approaches the value 9.88 as the number of trials is increased, which is the expected behavior of the Monte Carlo
simulation following the law of large numbers.

In our test file (test/Spec.hs), we confirm that the value our implementation is approaching is within range of
the value expected, as determined by the orginal Python solution for the Asian Option.

5

3.2 Performance

We conducted several tests of the sequential implementation with the following parameters controlled as:
t = 100
r = 0.05
u = 1.15
d = 1.01
s0 = 50
k = 70

We varied n, the number of trials and recorded the program’s runtime:

The runtime is relatively low, but after increasing the number of trials past 100000, runtime increases significantly,
with the program taking 15.46 seconds for n = 5000000, and 42.80 seconds for n = 10000000. Increasing n past
10000000 led to the sequential implementation failing due to overflow.

The ThreadScope activity seen below is for the trial ran with n = 5000000.

The eventlog shows consistent activity near 1 throughout the runtime of the program, and with a lot of garbage
collection left for the end of the program. The consistent activity of the program indicates the program is doing ef-
fective work, but it is limited by its sequential nature, as it is forced to do all of these computations one after another.

6

These metrics demonstrate how the sequential evaluation of our current program is severely limited as we in-
crease the number of trials, which is not ideal considering the Monte Carlo Output will be more precise with more
trials. In turn, we have reason to turn to Parallel strategies to create a more effective Monte Carlo Option Pricing
Method.

4 Parallel Implementation

Each trial of our Monte Carlo Simulation is doing a computation of similar complexity- each trial runs the same
calculation to determine an accumulated price along a time path, and only vary in random Bernoulli numbers. The
similarity in computational complexity between trials makes the function an excellent candidate for parallelism.

4.1 Algorithm

Before parallelism could occur, we had to significantly change the sequential algorithm, specifically the way we
were getting random Doubles for the Bernoulli random numbers. The sequential algorithm used IORandom to
return random doubles for the Monte Carlo simulations; however, we quickly discovered that the IO Monad forces
evaluation into sequential order. As an alternative, we decided to use a Pseudorandom Number Generator, or
PRNG. Generating truly random numbers is slow; alternatively, PRNGs use an initial seed to arithmetically generate
random-like sequences of numbers. Haskell’s built in PRNG is slow [2], so we needed to find an alternative.

In a blog post, Alexey Kuleshevi conducted a series of benchmark tests of different Haskell PRNGs and found
splitmix to be the best parallel performer for generating Doubles.[4]

Figure 2: Chart of the Performance of Different PRNGs

Shown above in figure 2, splitmix (the red bar) performs much faster than its competitors (mwc-random, sfmt, pcg-
random, mersenne-random) in a parallel setting. Consequently, we chose splitmix for our implementation, since
it provides a performance-optimal way to generate random Doubles. We incorporated splitmix into the parallel
implementation of the Asian Option Monte Carlo, monteCarloAsianParallel, in the following way:

• In our main executor we generate one truly random generator, and pass that generator as an argument to
monteCarloAsian Parallel

initGen <- initSMGen

-- ... (other code)

let resultPar = monteCarloAsianParallel coreCount n t r u d s0 k initGen

• We created a helper function used to split the initial generator into ’n’ independent generators.

-- Helper function to unfold SMGen into a list of n generators

unfoldsSMGen :: SMGen -> Int -> [SMGen]

unfoldsSMGen gen n = take n $ iterate (snd . splitSMGen) gen

• Within monteCarloAsian Parallel, unfoldsSMGen is used to split the initial generator into n generators, where
n is equal to the number of monte carlo trials to be conducted. a trial is run with each generator.

• Within each trial, the nextDouble function is used to determine the bernoulli random numbers, which returns
a random Double and a new generator.

7

bernoulliParallel :: Double -> SMGen -> (Int, SMGen)

bernoulliParallel p gen = let (!random_val, gen') = nextDouble gen

in (if random_val < p then 1 else 0, gen')

After incorporating splitmix, we were able to get monteCarloAsianParallel out of the IO Monad, allowing us to
begin parallelizing with Strategies.

4.2 Parallel Attempt 1

Our initial attempt was to simply apply rdeepseq to each trial with parMap.

monteCarloAsianParallel n t r u d s0 k initialGen =

sum (parMap rdeeseq trial (unfoldsSMGen initialGen n)) * discount) / fromIntegral n

-- ... (other code)

After testing this version, it was clear the initial attempt failed. The Threadscope eventlog showed Activity re-
maining around 1, indicating that the program was still executing processes sequentially; the cores weren’t working
in parallel as we first expected. Tested on the same parameters, the our ’parallel’ version managed to be about 1.6
times slower than the sequential version.

We believe this initial failure was due to how parMap works. Reading the documentation,

parMap strat f

is equivalent to

withStrategy (parList strat) . map f

Rewritten in the withStrategy form, our code looks like this:

monteCarloAsianParallel n t r u d s0 k initialGen =

sum (withStrategy (parList rdeepseq) . map trial

(unfoldsSMGen initialGen n)) * discount) / fromIntegral n

-- ... (other code)

The code above more clearing indicates how the strategy was being applied to the trial. However, the work that
occurs in the trial (as seen below) is a sequential calculation (calcPrice as shown below), since the accumulated
price along the path is dependent on the output of the previous step.

trial p_star u d s0 k t genTrial = do

let (!sum_prices, _) = calcPrice 0 t p_star u d 0 s0 genTrial

-- ... (other code)

8

-- Helper function to calculate the price in a given trial

calcPrice :: Int -> Int -> Double -> Double -> Double -> Double -> Double ->

SMGen -> (Double, SMGen)

calcPrice i t p_star u d !sum_prices !price genCalc

| i == t = (sum_prices, genCalc)

| otherwise = let (b, genNext) = bernoulliParallel p_star genCalc

(!newPrice, newGen) = if b == 1

then (price * u, genNext)

else (price * d, genNext)

in calcPrice (i + 1) t p_star u d (sum_prices + newPrice) newPrice newGen

Rather than simply applying a strategy to the trials’ computation, what we truly wanted was for the trials
themselves to be executed in parallel. This motivated our second attempt at parallelism.

4.3 Parallel Attempt 2

monteCarloAsianParallel n t r u d s0 k gen =

let chunkSize = n `div` 4

gens = unfoldsSMGen gen n

-- ... (other code)

trials = parMap rdeepseq (trial p_star u d s0 k t)

gens `using` parListChunk chunkSize rdeepseq

result = sum trials * discount / fromIntegral n

in result

Instead of simply apply parMap rdeepseq, we incorporated parListChunk. As shown in the code above, parListChunk
encases the original parMap rdeepseq statement, and sparks the list of evaluations in chunks of a predetermined
size. We chose to have chunkSize simply equal n, the number of trials divided by 4, which is equivalent to saying
we want around 4 chunks of size n/4 when grouping the trials in parListChunk. Each chunk is evaluated with the
strategy rdeepseq.

The ‘using‘ statement is equivalent to runEval (s x)

so the trials statement from above could be interpreted as

trials = runEval (parListChunk chunkSize rdeepseq) (parMap rdeepseq (trial p_star u d s0 k t) gens)

By encasing the parMap rdeeseq within another strategy for chunking, we are able to force the program out of the
sequential behavior exhibited in Attempt 1, and tell it to run the trials in chunks with rdeepseq.

In addition, we added BangPatterns throughout (see code in section 7.1) to specify strict instead of lazy eval-
uation within the trial helper functions.

4.3.1 Performance Compared to Sequential

By adding the parListChunk strategy, we were able to increase performance dramatically compared to the sequen-
tial version. With sequential and parallel on 4 cores run with the parameters

n = 5000000
t = 100
r = 0.05
u = 1.15
d = 1.01
s0 = 50
k = 70

9

We saw an improvement from 15.46 seconds to 3.36 seconds, which is a 4.6x speedup. More performance fig-
ures for Attempt 2 are found in section 4.4.2, which compares our final parallel performance with Attempt 2.

4.4 Parallel Attempt 3 (Final)

Despite the increased performance in Attempt 2, we were able to improve further by calculating the chunkSize

differently. We modified our original chunkSize calculation from

let chunkSize = n `div` 4

to

let chunkSize = n `div` (10 * numCores)

Our motivation for the new equation is to determine the chunkSize more carefully. The number of chunks that
will be run by parListChunk will end up being,

numChunk =
n

chunkSize

where n is the number of trials.

By setting chunkSize n, the number of trials we have to run, divided by 10 * number of cores, we are saying
that the number of chunks will be equal to 10*numCores

numChunks =
n
n

10×numCores

Which simplifies to
numChunks = 10× numCores

By setting the number of chunks to 10 * number of cores, we hope to divide the computational work evenly so
that each core will ideally run 10 equal chunks of trials in parallel.

To facilitate this new chunkSize calculation, we added an additional parameter to the monteCarloAsianParallel,
called numCores, which is determined by getNumCapabilities in main. getNumCapabilities returns the number
of Haskell threads that can run truly simultaneously (on separate physical processors) at any given time. [1]

coreCount <- getNumCapabilities

initGen <- initSMGen

let resultPar = monteCarloAsianParallel coreCount n t r u d s0 k initGen

4.4.1 Performance

Performance tests were conducted on an Ubuntu VM with 4 CPUs.
The new method for determining, along with the other changes from attempts 1 and 2 (splitmix, strategies, Bang-
Patterns), led to significant performance improvements.
Compared to the sequential implementation, the parallel implementation performed significantly faster when per-
forming trials ≥ 100000. For instance, when the parallel was run on 4 cores and with the parameters

n = 5000000
t = 100
r = 0.05
u = 1.15
d = 1.01
s0 = 50
k = 70

The parallel completed in 1.63 seconds, which is a 9.5x speedup compared to the sequential on the same parameters.

10

Figure 3: Performance of Sequential versus Parallel

Further, when we look closer at the performance of the parallel implementation on different cores, we saw the
program ran faster on more cores. This result was expected considering our intent was to spread the work evenly
across different cores, so using more cores was expected to improve performance.
The Threadscope results indicate a significant amount of activity in the later part of execution, indicating when
the trials are being run in parallel with the parListChunk strategy.

11

When analyzing the spark stats, all sparks were converted, indicating that the amount of sparks being created are
balanced and not adding unnecessary overhead to the program.

Compared to the sequential Threadscope data when run on trials = 50000000 and time steps = 100, the pro-
ductivity of the parallel version decreased to 49.4%. However, we took a look at what happens when we increase
the number of time steps instead of trials, and saw that productivity increased for more time steps.

We kept the parameters for r ,u ,d ,s0, and k the same as all previous tests, but we kept n fixed at 1000000
trials and instead modified t, the number of time steps per trial, from 100 to 1000 to 10000. Each test was run on
4 cores.
First we tested t =100

12

As expected, the productivity of t at 100 is 52.5%, matching the previous test which also used t=100.
Next, we increased time steps, t, to 1000

The results for t=1000 got more interesting. We saw a lot more Activity, peaking at 4 compared to when t = 100.
Further, productivity increased from 52.5% to 76.8%. This illustrates how despite each trial having to conduct
a more lengthy computation (since the recursive calls to calcPrice increase with more time steps), the cost of
garbage collection remains relatively the same between the trials.
This relationship continued when we increased t from 1000 to 10000. At t=10000, we were able to take full advantage
of the parallelism provided by the strategies

13

Activity remained around 4 for the execution of the program, and the spark stats show that the sparks were all
converted and evenly distributed between the cores.
By looking at the effect of varying n, the number of trials, and t, the number of steps per trial, we are able to better
understand the algorithmic properties of the Monte Carlo Simulation for Options that lend well to parallelism.
Since each trial is a similar computation in terms of complexity, they can be effectively distributed and run across
cores. Further, increasing t, the depth of the trial path, is what what originally makes Asian options difficult to
compute in a deterministic manner; yet, in terms of parallelism, increasing t most effectively takes advantage of the
parChunk strategy, and led to greater observed productivity in the program.

4.4.2 Performance Compared to Parallel Attempt 2

Finally, it is interesting to consider how a small change in computing the chunk size passed to parListChunk

changed the performance of the parallel algorithm.
As stated, between parallelization Attempts 2 and 3, we changed the evaluation of chunkSize from

let chunkSize = n `div` 4

to

let chunkSize = n `div` (10 * numCores)

The Attempt 2 version of the parallel method and the Final version of the parallel method were run with usual
stock parameters, trials n = 5000000, and time steps t = 100.

14

The old parallel implementation (left) took 3.36 seconds while the new implementation took 1.63 seconds, in-
dicating a 2.6x speedup. We believe the poorer performance of the previous implementation was due to a poor
balancing of sparks.

When looking at the spark activity for the old implementation (left), we can see millions of sparks were initialized
and most overflowed. In comparison, the new implementation (right) initialized 40 sparks, which is exactly how
many chunks we specified the program to divide the trial into. By divides the work into 40 chunks, we were able to
more carefully spark the work in parallel, and all 40 sparks were converted.
From these tests, the importance of having a more thoughtful sparking strategy became more clear. While running
the strategy on a somewhat arbitrary chunk size increased the speed of the parallel Monte Carlo substantially
compared to the sequential, determining a smaller chunk size and based on the number of cores led to run time
being halved. A final note about the performance of our parallel implementation, there is clearly two distinct
phases of the operation, an initial garbage collection intensive phase and then a more work intensive but less
garbage collection phase. This initial phase is the sole bottleneck for performance as while the initialisation of the
values of discount and pStar are there it is also definitely the way we are handling the random numbers, while less
strictly sequential than using the IO Monad there is still an element there that is holding back performance by a
decent bit.

5 Bonus Implementation: Vector Operations

Another way to look at these mathematical operations is from the perspective of vectors, since we have a state
vector - being the price - that is continually changing throughout the duration of the program. Haskell provides a
library full of vector operations and the vector as a data structure called ”Data.Vector”.

5.1 Sequential Algorithm

The algorithm for the vectorized sequential version is quite similar to the original sequential version with the main
difference being simply that we are using vectors:

monteCarloAsianVector :: Int -> Int -> Double -> Double -> Double -> Double -> Double -> IO Double

monteCarloAsianVector n t r u d s0 k = do

let discount = 1 / ((1 + r) ** fromIntegral t)

pStar = (1 + r - d) / (u - d)

let vectorTrialSeq = do

steps <- V.replicateM t (bernoulli pStar)

let priceVector = V.scanl' (\price step -> price * (if step == 1 then u else d)) s0 steps

sumPrices = V.sum priceVector - V.head priceVector

avgPrice = sumPrices / fromIntegral t

15

diffVal = avgPrice - k

return $ max diffVal 0

total <- sum <$> replicateM n vectorTrialSeq

return $ (total * discount) / fromIntegral n

The computation of the discount and the pStar variables are identical as in the original implementation, we start
by generating a vector containing each of the Bernoulli values needed and then we operate on the price, using the
values within the steps vector, we then perform the same operations as before, summing up the results, taking the
average and calculating the payout.

5.2 Sequential Performance

The performance of the vector implementation seems to vary depending on the system and other factors like version
of Haskell you are using, for reference the performance figures that will be presented came from a virtual machine
running Ubuntu 20.04 rather than the native operating system of the executing machine which was Windows
11. In general it was observed that for a relatively small amount of computations, the vectorized version bested
its sequential counterpart however this was a trend that did not last and it will become quite evident why in a
moment.

Looking at this Threadscope image the problem becomes quite clear, there is too much overhead and garbage
collection takes up a significant amount of the processing time. This is significance is quite large as productivity is
only 27.6%.

The function call that resulted in the following information had the following parameters passed along to it.
n = 100000, t = 100, r = 0.05, u = 1.15, d = 1.01, s0 = 50, k = 70 There is much to be had when it comes to
performance, but with the current implementation those garbage collections instances are not going to go down by
much. It is perhaps these garbage collection moments that give reason as to why the algorithm performs noticeably
different on different systems, if different operating systems have more elegant ways of handling garbage collection
then this waste can be minimized.

5.3 Parallel Algorithm

The parallel algorithm takes much inspiration from the previous parallel implementation when vectors were not
concerned. This is present in both the modularization of the code and the particular parallelization strategies used
to achieve the enhanced performance.

16

monteCarloAsianParallelVector :: Int -> Int -> Int -> Double -> Double -> Double -> Double -> \

Double -> SMGen -> Double

monteCarloAsianParallelVector numCores n t r u d s0 k init_gen =

let !discount = 1 / ((1 + r) ** fromIntegral t)

!pStar = (1 + r - d) / (u - d)

chunkSize = n `div` (10 * numCores)

gens = unfoldsSMGen init_gen n

trials = withStrategy (parListChunk chunkSize rdeepseq) $

map (runEval . vectorTrial pStar u d s0 k t) gens

!result = sum trials * discount / fromIntegral n

in result

vectorTrial :: Double -> Double -> Double -> Double -> Double -> Int -> SMGen -> Eval Double

vectorTrial pStar u d s0 k t gen = do

let steps = V.unfoldrN t (unfoldBernoulli pStar) gen

priceVector = V.scanl' (\price step -> price * (if step == 1 then u else d)) s0 steps

sumPrices = V.sum priceVector - V.head priceVector

avgPrice = sumPrices / fromIntegral t

diffVal = avgPrice - k

return $ max diffVal 0

unfoldBernoulli :: Double -> SMGen -> Maybe (Int, SMGen)

unfoldBernoulli p gen = Just $ bernoulliParallel p gen

We used the same chunking strategy that we used to implement the original parallel implementation and this
runs the vector trials in chunks that are dependent on the number of cores, as mentioned earlier this strategy of
deriving the chunk size based on the core count rather than a static value helps with balancing when more cores
are introduced.

5.4 Parallel Performance

As soon as we ran a single multi-threaded test with this new parallelized algorithm we knew that there was a
massive speed up and this is supported by the details presented in threadscope.

17

The figure illustrates a massive decrease in runtime as well as a very noticeable decrease in the time spent handling
garbage collection, it is important to note that this is purely algorithmic as the test that produced the above figure
was ran immediately after the test for the sequential vector algorithm. We can also see that there is a massive
increase in productivity as well from the following figure:

A jump to 71.2% percent in productivity from 27.6% is a 2.6x increase in productivity, when it comes to the actual
runtime there was a 14.6x speedup. The following graphic shows the runtime against the number of threads and
it can be seen that there is a massive speedup from the initial parallelization but as more threads are added the
benefits tapper off, which is expected. There is also the consideration of substantial algorithmic differences which
are also definitely contributing to the increased performance.

18

The associated error on the figures comes from running a few iterations of each test and then determining the spread
of those values and determining the median and the low and high values and what percentage of the median value
the difference was.

5.5 Potential Performance Enhancing Alternatives

Of course this is not the absolute best solution for parallelizing vector operations in Haskell. Viable alternative ap-
proaches to parallelization include using the Repa library (Regular Parallel Arrays) contained with Data.Array.Repa
to model the simulation and perform operations on those. It is a good option but not the approach we went with
for this analysis. Repa comes with builtin parallelization functions and when used properly could provide some
significant performance enhancements. The potential peak for performance with these vector operations is found
within the Accelerate library that is associated with Haskell, when using accelerate at its best which is with using
a cuda supported GPU as the backend for your code, the number of threads jumps from 1̃6 to over 1000 and
maybe even more depending on the specific NVIDIA GPU you have within your system. The only problem is that
accelerate is not kept up to date with the standard Haskell programming language or any of its main associated
tool like stack and cabal, so in order to use it you need to have the conditions set just right within your system to
get it to even compile properly. This very issue is what led us to creating VMs in the first place as we did attempt
to experiment with what Accelerate had to offer and we got as far as enabling it to compile with an enhanced
CPU backend. The new syntax, lengthy documentation, and the limit on the available time we had to spend on
this particular portion led to us abandoning it, the decision to cease development of an accelerated version of our
algorithm was made even more rational considering the fact that the cuda development kit necessary to even access
the GPU in the first place was simply not working well with one of our VM environments, so much so that the VM
had to be recreated 2 times due to attempts to install the kit corrupting vital parts of the system.

6 Conclusion: Putting it All Together

At this point we have seen 4 distinct implementations of the Monte Carlo simulations involving pricing Asian call
options: A Standard Sequential Algorithm, A Standard Parallel Algorithm, A Vectorized Sequential Algorithm, and
A Vectorized Parallel Algorithm. We saw excellent performance gains when we transitioned from both sequential
algorithms to their parallel counterparts. The gain in performance was the highest in the vectorized form but despite
these gains it still didn’t pull ahead of the standard parallel algorithm, we believe this to be due to the overhead
involved with Haskell data structures as those require extra memory that will eventually need to be reclaimed by
the computer at some point in the life span of our program. Chances are had we managed to actually program
the GPU using the accelerate library then that implementation would have blown the other implementations out
of the water. Overall Haskell does make it relatively straightforward to parallelize your programs in order to make
a better use of your computer’s processing power, but it also very much helped that Monte Carlo simulations by
design are able to be parallelized to such a significant extent that it makes the efforts put forth while in our attempts
to parallelize the algorithm very much worth it.

19

7 Haskell Code Reference

-- Library.hs

{-# LANGUAGE BangPatterns #-}

{-# LANGUAGE FlexibleContexts #-}

{-# LANGUAGE ScopedTypeVariables #-}

module Library (bernoulli, monteCarloAsian, validateInputs, monteCarloAsianParallel,

bernoulliParallel, unfoldsSMGen, monteCarloAsianVector, monteCarloAsianParallelVector,

unfoldBernoulli, vectorTrial) where

import System.Random

import System.Random.SplitMix

import qualified Data.Vector as V

import Control.Monad (replicateM, unless, when)

import Control.Parallel.Strategies (rdeepseq, Eval, parListChunk, runEval, withStrategy)

-- Sequential Content Begins --

monteCarloAsian :: Int -> Int -> Double -> Double -> Double -> Double -> Double -> IO Double

monteCarloAsian n t r u d s0 k = do

-- Calculate discount factor and probability of an up movement

let discount = 1 / ((1 + r) ^ t)

pStar = (1 + r - d) / (u - d)

-- Perform a single trial of the simulation

let seqTrial = do

-- Recursively calculate the sum of prices along a path

let seqCalcPrice i sumPrices price

| i == t = return sumPrices

| otherwise = do

b <- bernoulli pStar

if b == 1

then seqCalcPrice (i + 1) (sumPrices + (price * u)) (price * u)

else seqCalcPrice (i + 1) (sumPrices + (price * d)) (price * d)

-- Calculate the difference between average simulate price and strike price

sumPrices <- seqCalcPrice 0 0.0 s0

let diffVal = (sumPrices / fromIntegral t) - k

return $ diffVal `max` 0

-- Perform 'n' trials and compute the average

total <- sum <$> replicateM n seqTrial

return $ (total * discount) / fromIntegral n

-- Main function for sequential vectors

monteCarloAsianVector :: Int -> Int -> Double -> Double -> Double -> Double -> Double -> IO Double

monteCarloAsianVector n t r u d s0 k = do

let discount = 1 / ((1 + r) ** fromIntegral t)

pStar = (1 + r - d) / (u - d)

let vectorTrialSeq = do

steps <- V.replicateM t (bernoulli pStar)

let priceVector = V.scanl' (\price step -> price * (if step == 1 then u else d)) s0 steps

sumPrices = V.sum priceVector - V.head priceVector

avgPrice = sumPrices / fromIntegral t

diffVal = avgPrice - k

20

return $ max diffVal 0

total <- sum <$> replicateM n vectorTrialSeq

return $ (total * discount) / fromIntegral n

-- Helper function for sequential algorithm to generate random values

bernoulli :: Double -> IO Int

bernoulli p = do

randomVal <- randomIO -- :: IO Double

return $ if randomVal < p then 1 else 0

-- Sequential Content Ends --

-- Parallel Content Begins --

-- Main function for the parallel simulations

monteCarloAsianParallel :: Int -> Int -> Int -> Double -> Double -> Double -> Double -> Double -> SMGen -> Double

monteCarloAsianParallel numCores n t r u d s0 k init_gen =

let !discount = 1 / ((1 + r) ^ t)

!pStar = (1 + r - d) / (u - d)

chunkSize = n `div` (10 * numCores)

gens = unfoldsSMGen init_gen n

trials = withStrategy (parListChunk chunkSize rdeepseq) $

map (runEval . trial pStar u d s0 k t) gens

!result = sum trials * discount / fromIntegral n

in result

-- Helper function to unfold SMGen into a list of n generators

unfoldsSMGen :: SMGen -> Int -> [SMGen]

unfoldsSMGen gen n = take n $ iterate (snd . splitSMGen) gen

-- Helper function to complete a single trial

trial :: Double -> Double -> Double -> Double -> Double -> Int -> SMGen -> Eval Double

trial pStar u d s0 k t genTrial = do

let (!sumPrices, _) = calcPrice 0 t pStar u d 0 s0 genTrial

!diffVal = (sumPrices / fromIntegral t) - k

return $ max diffVal 0

-- Helper function to calculate the price in a given trial

calcPrice :: Int -> Int -> Double -> Double -> Double -> Double -> Double -> SMGen -> (Double, SMGen)

calcPrice i t pStar u d !sumPrices !price genCalc

| i == t = (sumPrices, genCalc)

| otherwise = let (b, genNext) = bernoulliParallel pStar genCalc

(!newPrice, newGen) = if b == 1

then (price * u, genNext)

else (price * d, genNext)

in calcPrice (i + 1) t pStar u d (sumPrices + newPrice) newPrice newGen

-- Helper function to generate a Bernoulli trial result given a probability and a generator

bernoulliParallel :: Double -> SMGen -> (Int, SMGen)

bernoulliParallel p gen = let (!randomVal, gen') = nextDouble gen

in (if randomVal < p then 1 else 0, gen')

-- Main function for vectors in parallel

monteCarloAsianParallelVector :: Int -> Int -> Int -> Double -> Double -> Double -> Double -> Double -> SMGen -> Double

monteCarloAsianParallelVector numCores n t r u d s0 k init_gen =

let !discount = 1 / ((1 + r) ** fromIntegral t)

21

!pStar = (1 + r - d) / (u - d)

chunkSize = n `div` (10 * numCores)

gens = unfoldsSMGen init_gen n

trials = withStrategy (parListChunk chunkSize rdeepseq) $

map (runEval . vectorTrial pStar u d s0 k t) gens

!result = sum trials * discount / fromIntegral n

in result

-- Helper function to complete a single vector trial

vectorTrial :: Double -> Double -> Double -> Double -> Double -> Int -> SMGen -> Eval Double

vectorTrial pStar u d s0 k t gen = do

let steps = V.unfoldrN t (unfoldBernoulli pStar) gen

priceVector = V.scanl' (\price step -> price * (if step == 1 then u else d)) s0 steps

sumPrices = V.sum priceVector - V.head priceVector

avgPrice = sumPrices / fromIntegral t

diffVal = avgPrice - k

return $ max diffVal 0

-- Helper function to generate the bernoullis

unfoldBernoulli :: Double -> SMGen -> Maybe (Int, SMGen)

unfoldBernoulli p gen = Just $ bernoulliParallel p gen

-- Parallel Content Ends --

-- General All purpose helper functions below --

-- Helper function to validate the provided inputs from the user

validateInputs :: Int -> Int -> Double -> Double -> Double -> Double -> Double -> IO ()

validateInputs n t r u d s0 k = do

when (n <= 0) $ error "Invalid value for n. Number of trials (n) must be greater than 0."

when (t < 1) $ error "Invalid value for t. Number of time steps (t) must be greater than or equal to 1."

when (r <= 0) $ error "Invalid value for r. The interest rate (r) must be greater than 0."

when (u <= 0) $ error "Invalid value for u. The up factor (u) must be greater than 0."

when (d <= 0) $ error "Invalid value for d. The down factor (d) must be greater than 0."

when (s0 <= 0) $ error "Invalid value for s0. Initial stock price (s0) must be greater than 0."

when (k <= 0) $ error "Invalid value for k. Strike price (k) must be greater than 0."

unless (0 < d && d < 1 + r && 1 + r < u) $

error "Invalid values for r, u, and d entered.\nThe relationship 0 < d < r < u must be maintained to get valid results."

-- Main.hs

module Main (main) where

import Library

import Control.Concurrent (getNumCapabilities)

import System.Random.SplitMix

import Data.Time

{- |

Entry point for the system asks the user to enter different quantities

and then validates the input prior to execution.

-}

main :: IO ()

main = do

putStrLn "Enter the number of simulations (n):"

n <- read <$> getLine

putStrLn "Enter the number of time steps (t):"

t <- read <$> getLine

22

putStrLn "Enter the interest rate (r):"

r <- read <$> getLine

putStrLn "Enter the up factor (u):"

u <- read <$> getLine

putStrLn "Enter the down factor (d):"

d <- read <$> getLine

putStrLn "Enter the initial stock price (s0):"

s0 <- read <$> getLine

putStrLn "Enter the strike price (k):"

k <- read <$> getLine

validateInputs n t r u d s0 k

-- sequential non vector

putStrLn "Sequential Monte Carlo Simulation:"

start <- getCurrentTime

resultAsian <- monteCarloAsian n t r u d s0 k

stop <- getCurrentTime

let timeDiff = diffUTCTime stop start

putStrLn $ "Result Monte Carlo Asian Option [Sequential]: " ++ show resultAsian

putStrLn $ "Time to Run: " ++ show timeDiff

-- parallel non vector

coreCount <- getNumCapabilities

initGen <- initSMGen

start' <- getCurrentTime

let resultPar = monteCarloAsianParallel coreCount n t r u d s0 k initGen

stop' <- getCurrentTime

let timeDiff' = diffUTCTime stop' start'

putStrLn $ "Result Monte Carlo Asian Option [Parallel]: " ++ show resultPar

putStrLn $ "Time to Run: " ++ show timeDiff'

-- sequential vector

putStrLn "Sequential Monte Carlo Simulation Vector:"

start'' <- getCurrentTime

resultAsianVec <- monteCarloAsianVector n t r u d s0 k

stop'' <- getCurrentTime

let timeDiff'' = diffUTCTime stop'' start''

putStrLn $ "Result Monte Carlo Asian Option [Sequential Vector]: " ++ show resultAsianVec

putStrLn $ "Time to Run: " ++ show timeDiff''

-- parallel vector

putStrLn "Monte Carlo Simulation Parallel Vector:"

start''' <- getCurrentTime

let resultAsianPA = monteCarloAsianParallelVector coreCount n t r u d s0 k initGen

stop''' <- getCurrentTime

let timeDiff''' = diffUTCTime stop''' start'''

putStrLn $ "Result Monte Carlo Asian Option [Parallel Vector]: " ++ show resultAsianPA

putStrLn $ "Time to Run: " ++ show timeDiff'''

23

-- Spec.hs

import Library

import Test.HUnit

import System.Random.SplitMix

import Control.Concurrent (getNumCapabilities)

{- |

Test Suite for the Monte Carlo Simulations functions contained within the Library module.

Precondition: HUnit library is installed, use stack install hunit to confirm installation or proceed with it.

Postcondition: All Tests run successfully.

-}

test1 :: Test

test1 = TestCase $ do

let n = 10000

t = 10

r = 0.05

u = 1.15

d = 1.01

s0 = 50

k = 70

result <- monteCarloAsian n t r u d s0 k

let lowerBound = 0.9

upperBound = 1.4

assertBool "Result is within bounds" (result >= lowerBound && result <= upperBound)

test2 :: Test

test2 = TestCase $ do

let n = 10000

t = 10

r = 0.05

u = 1.15

d = 1.01

s0 = 50

k = 70

result <- monteCarloAsianVector n t r u d s0 k

let lowerBound = 0.9

upperBound = 1.4

assertBool "Result is within bounds" (result >= lowerBound && result <= upperBound)

test3 :: Test

test3 = TestCase $ do

let n = 10000

t = 10

r = 0.05

u = 1.15

d = 1.01

s0 = 50

24

k = 70

numCores <- getNumCapabilities

initGen <- initSMGen

let result = monteCarloAsianParallel numCores n t r u d s0 k initGen

let lowerBound = 0.9

upperBound = 1.4

assertBool "Result is within bounds" (result >= lowerBound && result <= upperBound)

test4 :: Test

test4 = TestCase $ do

let n = 10000

t = 10

r = 0.05

u = 1.15

d = 1.01

s0 = 50

k = 70

numCores' <- getNumCapabilities

initGen' <- initSMGen

let result = monteCarloAsianParallelVector numCores' n t r u d s0 k initGen'

let lowerBound = 0.9

upperBound = 1.4

assertBool "Result is within bounds" (result >= lowerBound && result <= upperBound)

tests :: Test

tests = TestList [TestLabel "Sequential Test [Non Vector]" test1, TestLabel "Sequential Test [Vector]" test2, TestLabel "Parallel Test [Non Vector]" test3, TestLabel "Parallel Test [Vector]" test4]

main :: IO ()

main = do

results <- runTestTT tests

print results

25

8 References

[1] Control-Concurrent. Hackage. url: https://hackage.haskell.org/package/base- 4.19.0.0/docs/
Control-Concurrent.html#v:getNumCapabilities.

[2] Bryan O’Sullivan. Real World Haskell. O’Reilly, 2008, pp. 531–560.

[3] Nicholas Privault. Asian Options. 2023, pp. 1–3.

[4] Random Benchmarks. Alexey Kuleshevi. url: https://alexey.kuleshevi.ch/blog/2019/12/21/random-
benchmarks/.

[5] What Are Asian Options and How Are They Priced? SoFi. url: https://www.sofi.com/learn/content/
asian-option/#:~:text=How%20Asian%20Options%20Work,a%20specified%20period%20of%20time..

[6] What is The Monte Carlo Simulation? Amazon Web Services. url: https://aws.amazon.com/what-
is/monte-carlo-simulation/#:~:text=The%20Monte%20Carlo%20simulation%20is,on%20a%20choice%

20of%20action.

26

https://hackage.haskell.org/package/base-4.19.0.0/docs/Control-Concurrent.html#v:getNumCapabilities
https://hackage.haskell.org/package/base-4.19.0.0/docs/Control-Concurrent.html#v:getNumCapabilities
https://alexey.kuleshevi.ch/blog/2019/12/21/random-benchmarks/
https://alexey.kuleshevi.ch/blog/2019/12/21/random-benchmarks/
https://www.sofi.com/learn/content/asian-option/#:~:text=How%20Asian%20Options%20Work,a%20specified%20period%20of%20time.
https://www.sofi.com/learn/content/asian-option/#:~:text=How%20Asian%20Options%20Work,a%20specified%20period%20of%20time.
https://aws.amazon.com/what-is/monte-carlo-simulation/#:~:text=The%20Monte%20Carlo%20simulation%20is,on%20a%20choice%20of%20action
https://aws.amazon.com/what-is/monte-carlo-simulation/#:~:text=The%20Monte%20Carlo%20simulation%20is,on%20a%20choice%20of%20action
https://aws.amazon.com/what-is/monte-carlo-simulation/#:~:text=The%20Monte%20Carlo%20simulation%20is,on%20a%20choice%20of%20action

	Introduction
	Background
	Mathematical Background
	Monte Carlo Method
	Options Pricing
	Probability Background

	Programming Background

	Sequential Implementation
	Algorithm
	Performance

	Parallel Implementation
	Algorithm
	Parallel Attempt 1
	Parallel Attempt 2
	Performance Compared to Sequential

	Parallel Attempt 3 (Final)
	Performance
	Performance Compared to Parallel Attempt 2

	Bonus Implementation: Vector Operations
	Sequential Algorithm
	Sequential Performance
	Parallel Algorithm
	Parallel Performance
	Potential Performance Enhancing Alternatives

	Conclusion: Putting it All Together
	Haskell Code Reference
	References

