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1 Background & Objective

Rat in a Maze is a game set up as a maze on a two-dimensional nxn grid, where
open cells have the value 1 (representing True as in the rat can move here) and
closed cells (i.e., walls) have the value 0 (representing False as in the rat can’t
move here). The goal is to find the shortest distance to navigate the ’rat’ from
the start point (0,0) to the end point (n-1,n-1) in the maze.

The input to the program is a file called maze examples.txt (generated by
maze generator.py) in which each line represents a maze as a string of 0s and
1s separated by commas. The main Haskell function is designed to take in the
maze examples.txt file and reshape these mazes into 100x100 2D arrays to put
into our entry point function astar.

Figure 1 is an example 2d maze input, not one of the 100x100 mazes.

Figure 1: Example of 15x15 2d array

The output is a list containing the shortest path found by the maze solver,
represented as a list of positions [(x0, y0), (x1, y1), ...(xn−1, yn−1)], where m is
the number of steps in the shortest path. If no paths are found, the program
will output the line ”No path found.”
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2 Implementations

2.1 Sequential (Base Algorithm)

Our sequential implementation uses the A* algorithm to find the shortest path
through the maze, if paths exist. We consider all cells in the maze as either
open or closed (i.e. a wall), represented as the values 1 and 0 respectively.
Each open cell is represented as a Node having the associated information:
position, g-cost, h-cost and parent Node. The position and parent Node are
self-explanatory; the g-cost and h-cost combined offer a heuristic for evaluating
each Node. The g-cost of a Node is the cost to reach the current Node from the
start Node. The h-cost of a Node is the estimated cost to reach the end-point
of the maze from the current Node. In our implementation of the A* algorithm,
we’ve used Manhattan distance to approximate each Node’s h-cost. Thus, the
total estimated cost of a Node f(n) = g(n) + h(n), where g(n) is the g-cost of the
current Node n and h(n) is its h-cost. In addition to this specific representation
of open cells, the algorithm uses a priority queue as an “open list,” keeping
track of nodes that are “open” for evaluation and sorting them by total cost (in
ascending order). A visited list is also maintained to keep track of nodes that
have already been evaluated.

In theory, the A* algorithm begins at the initial node (start position) and
adds it to the open list. A main loop then iteratively selects the node with
the lowest total cost from the “open list” for evaluation. With the selected
node, the algorithm checks whether it’s the endpoint of the maze, in which
case the algorithm terminates and reconstructs the path from endpoint to start.
Otherwise, the node’s neighbors are considered, adding them as nodes to the
“open list, with updated costs.

*Note that our algorithm is a simplified version of A*. The A* algorithm
can be implemented such that when evaluating the current node’s neighbors,
each neighbor’s g-cost is only updated if its new g-cost (from this current node)
is lower than its previous g-cost (from being the neighbor of a previously visited
node). In our algorithm, we update cost so that a neighbor node’s g-cost is the
current node’s g-cost plus 1. While this simplification may lead to redundant
additions of neighbor nodes to the priority queues, potentially for the same
position but with different costs, the priority queue-like structure ensures that
nodes with the lowest costs are still prioritized. This adaptation allows for a
clear and concise implementation while retaining the core mechanism of selecting
nodes with the lowest costs.

Our implementation has the function ‘astar‘ as the entrypoint for the al-
gorithm, taking a maze as input and potentially resulting in the shortest path
from start to end (if no path is found, Nothing is returned). The helper func-
tion ‘go‘ performs the recursive act of evaluating whether the current node is
the end goal, and if not, expanding the search, essentially, to the node’s neigh-
bors and updating their costs and associated parent node. Below is our code
implementation, sectioned out.

Here are the type synonyms we’ve used to represent Position and Maze and
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our Node data type.

Note that in our ‘astar‘ function (shown later), we used a sorted list to
maintain the priority queue, rather than importing the priority queue type for
simplicity of implementation and practicality. To do so, we declared ‘Node‘ as an
instance of the ‘Ord‘ type class (shown above) and implemented the ‘compare‘
function to compare nodes based on total cost (g-cost + h-cost).

Below are our helper functions for the A* algorithm. To summarize:

• ‘initialNode‘ - creates the initial node with position (0, 0), gCost 0, hCost
calculated using the heuristic function, and no parent.

• ‘isGoal‘ - checks if a given position is the goal in the maze

• ‘expandNode‘- generates neighboring nodes for a given node, filtering
based on valid positions

• ‘updateCosts‘ - updates the cost values for a list of nodes based on the
parent’s costs and the heuristic function

• ‘heuristic‘ - computes the heuristic value (Manhattan Distance) for a given
position

• ‘isValidPosition‘ - checks if a position is valid in the maze, including
whether it’s an open cell (==1)

• ‘extractPath‘ - extracts the path from a goal node back to the initial node,
using recursion and nodes’ parent pointers

3



Below is our ‘astar‘ function, which has the ‘go‘ recursive helper function.
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2.2 Parallel

In contrast to other graph search and pathfinding algorithms, parallelizing the
A* algorithm poses unique challenges. During each time step, the algorithm
assesses the state with the minimum total cost in the priority queue. It proceeds
to expand the neighbors of the selected state, calculates the costs associated with
these neighbors, and then reinserts them back into the priority queue in a sorted
order. The complexities in parallelizing this algorithm stem from the following
factors:

• Challenge 1: Working with parallel threads on a single priority queue
introduces potential race conditions. Each thread must lock the priority
queue to access the most promising state and lock it again to push its
neighbors. This locking mechanism hampers concurrency and slows down
the algorithm due to contention for queue access.

• Challenge 2: Given the possibility of multiple states having the same cost,
the top state in the priority queue may not always result in the optimal
path.

To address these challenges, we propose three different parallelization strategies:

2.2.1 ParallelCost

For our first parallelization strategy, we need to make sure that we do not
introduce potential race conditions by working with parallel threads on a single
priority queue (Challenge 1). Additionally, in the A* algorithm, we need to
maintain a global state of visited nodes visible to all parallel evaluations so they
don’t repeat the same moves that were already evaluated in another thread.
Thus, the only operation independent of other states and would not cause race
conditions on a single priority queue is the update of each node’s cost. rpar,
which prioritizes parallel evaluation without a predefined order, is employed
instead of rseq, since the nodes will be subsequently sorted based on their costs.
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However, since the computation of Manhattan Distance is not resource-intensive,
attempting parallelization in this manner is likely to result in significant over-
head due to the creation of sparks and threads. Therefore, we explored alter-
native parallelization strategies below.

2.2.2 ParallelNodes

At each time step, the first node in the priority queue might not necessarily
represent the most optimal path since multiple states could have the same cost
(Challenge 2). Frequently, the algorithm identifies an optimal path by exploring
states ranked lower in the priority queue. In the A* algorithm, we could discon-
tinue exploration of a particular path after realizing that it is not the optimal
path, and pivot to exploring the next best path and subsequent alternatives.

With parallelization, a more effective solution would be to create sparks on
the expansion of the first k elements of the priority queue, representing the top-k
potential path candidates. (k is less than or equal to the number of elements in
the priority queue.) Due to the inherent determinism of Haskell and, therefore,
the complexity associated with managing a global state of visited nodes across
parallel evaluations, we chose to omit this consideration. We also opted to use
a single priority queue which could cause race conditions (Challenge 1), but we
focused on finding a solution to solve challenge 2 which we believed would yield
a reasonable speedup.
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2.2.3 ParallelMaze

Finally, one approach to implementing parallelization involves keeping the se-
quential A* algorithm unchanged and introducing parallelism through various
static partitioning and dynamic partitioning as discussed in class. These im-
plementations are expected to yield substantial speed improvements, as each
thread can solve mazes at a pace comparable to the sequential implementation
with no dependencies (challenge 1) between different states.

1. Static partitioning:

• We split mazes to two lists as’ and bs’ and used rpar and force to
parallelly solve two lists of mazes. We can take advantage of two
cores.

2. Dynamic partitioning:

• To assess the parallel solving of mazes utilizing additional cores, we
also incorporated dynamic partitioning with the parMap’ function.
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3 Evaluation and Results

3.1 ParallelCost

The initial effort to concurrently update the costs of the neighboring states
revealed subpar performance improvements. This lack of success is at-
tributed to the inherent limitations of the maze setup, where each maze
has a maximum of 4 possible next states, and, therefore, a maximum of
4 costs to update. Moreover, the simplicity of Manhattan Distance used
in the updateCost operation, requires minimal calculation. Attempting
to update these costs in parallel introduces excessive overhead compared
to the computational workload. We speculate that with a more complex
cost function, there may be potential performance gains through parallel
evaluation.

Table 1: Performance Comparison for ParallelCost
Time (s) Speed Up

Sequential 12.961 1.00x
Parallel-Cost (1-core) 12.909 1.00x
Parallel-Cost (2-core) 12.614 1.02x
Parallel-Cost (3-core) 12.737 1.02x
Parallel-Cost (4-core) 13.043 0.99x
Parallel-Cost (5-core) 12.854 1.01x

3.2 ParallelNodes

ParallelNodes demonstrates effective performance by providing a substan-
tial speedup compared to its sequential counterpart that only looks at the
node with the lowest cost. This observation challenges the notion that
the state with the lowest cost in the priority queue is always the optimal
solution. In our experiments, we maintain a fixed number of expanded
nodes at 5.

Table 2: Performance Comparison for ParallelNodes
Time (s) Speed Up

Sequential 12.961 1.00x
Parallel-Nodes (1-core) 6.602 1.96x
Parallel-Nodes (2-core) 5.547 2.33x
Parallel-Nodes (3-core) 5.010 2.58x
Parallel-Nodes (4-core) 4.115 3.15x
Parallel-Cost (5-core) 3.254 3.98x

In Table 2 above, even when utilizing just one core, ParallelNodes demon-
strates a speedup of nearly 2x, whereas in ParallelCost, the speedup was
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approximately 1x. This observation suggests that the locking mechanism
that slows down the algorithm due to contention for queue access may
be outweighed by the efficiency gained in discovering the shortest path,
potentially residing within one of the top 5 elements.

In cases where the number of cores does not match k(=5), the Paral-
lelNodes algorithm resorts to simultaneously executing multiple expansion
computations on a single core. As the number of cores increases, each
core gains the ability to manage distinct expansions which yields a no-
table performance boost — roughly 3.98x times faster than the sequential
implementation. While we see later that ParallelNodes’ performance just
falls short as compared to the performance of ParallelMaze, the speedup
is quite impressive.

Figure 2: ParallelNodes; core=5

As illustrated in the figure above, there are no idle cores, and the dis-
tribution of tasks appears to be relatively efficient, provided the number
of cores employed exceeds k. The garbage collection is pretty consistent
during the entire runtime.

Table 3: Performance Comparison for ParallelNodes - Increasing Cores Used
Time (s) Speed Up

Parallel-Nodes (k=5, 8-core) 3.704 3.50x
Parallel-Nodes (k=5, 10-core) 3.935 3.29x

Table 4: Performance Comparison for ParallelNodes where k=10
Time (s) Speed Up

Parallel-Nodes (k=10, 1-core) 6.199 2.09x
Parallel-Nodes (k=10, 2-core) 4.986 2.60x
Parallel-Nodes (k=10, 4-core) 4.396 2.95x
Parallel-Nodes (k=10, 8-core) 3.859 3.35x
Parallel-Nodes (k=10, 10-core) 3.400 3.81x

9



From tables 3 and 4, we also found that increasing both the number of
cores and the number of expanded nodes, k, to a larger value did not result
in a significant improvement in the final outcome as compared to that of
ParallelNodes (k=5; 5-core), and this is attributed to two primary reasons.
Firstly, Amdahl’s law posits that the speedup in a parallel algorithm is
constrained by the extent of the sequential fraction of the task. Secondly,
by increasing k, the additional threads created may explore states that are
progressively less likely to represent the optimal path, given their higher
associated cost f(n) = g(n) + h(n). Consequently, any potential speedup
is deemed less probable.

3.3 ParallelMaze

Tables 5 and 6 show the speedup using parallelization over k-mazes.

Table 5: Performance Comparison for ParallelMaze: Static Partitioning
Time (s) Speed Up

Sequential 12.961 1.00x
Parallel-Maze (1-core) 11.376 1.14x
Parallel-Maze (2-core) 6.696 1.94x

The static partitioning approach employing 2 cores demonstrated com-
mendable performance, achieving a speedup of 1.94. The program uses
both cores effectively for the majority of the execution; however, core 1
becomes idle toward the end of the program, while core 2 continues its exe-
cution (Figure 3). This is likely because the first 50 example mazes might
be easier to solve sequentially than the second 50 example mazes, and
therefore, core 1 becomes idle while it waits for core 2 to finish executing
the second half of the example mazes.

Figure 3: ParallelMaze - Static; core = 2

The parallel GC work balance was 44.98% (serial 0%, perfect 100%).
There were 2 sparks created (1 converted, 1 fizzled). The fizzed spark
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is likely explained by the main computation having already performed the
work, thus causing it to fail to turn into a real thread.

Table 6: Performance Comparison for ParallelMaze: Dynamic Partitioning
Time (s) Speed Up

Sequential 12.961 1.00x
Parallel-Maze (1-core) 13.450 0.96x
Parallel-Maze (2-core) 7.193 1.80x
Parallel-Maze (3-core) 4.773 2.72x
Parallel-Maze (4-core) 3.810 3.40x
Parallel-Maze (5-core) 3.237 4.00x

By contrast, dynamic partitioning with 2 cores has a lower speedup (1.80x)
than that of static partitioning with 2 cores (1.94x). However, when we
increase the number of cores linearly to 5 cores, the speedup increases
almost linearly to 4.00x for 5 cores. This speedup is the fastest we have
seen across all parallelization strategies and hyperparameters.

Figure 4: ParallelMaze - Dynamic; core = 5

From Threadscope, we saw that 100 sparks were created, and 100 were
converted. This is excellent, as it suggests that parallelism was fully uti-
lized in this approach. There were no wasted sparks and none were lost
due to garbage collection or fizzling out/failing to turn into a real thread.
At any given time stamp, almost all cores were used.
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4 Conclusion

Our investigation highlights that parallelism can improve the efficiency of
finding the shortest path in a maze. Nevertheless, not every aspect of the
A* algorithm lends itself to parallelization for notable performance gains.
Take, for instance, the updateCost function (calculation of Manhattan
Distance), which is not particularly resource-intensive; hence, parallelizing
such calculations does not yield substantial benefits. Among the three
tested parallelization methods, the most effective was parMaze, specifically
dynamic partitioning utilizing 5 cores. Its speedup was 4.00x.

5 Future Work

We hope to enhance the efficiency of our current implementation by adopt-
ing a more optimized data structure for storing nodes, considering the inte-
gration of PQueue instead of relying on a list that necessitates subsequent
sorting. Additionally, we want to explore the possibility of introducing
two global states to keep track of visited nodes, reducing redundant com-
putations during the traversal process, and a priority queue, mitigating
contention issues and enhancing the synchronization of parallel threads ac-
cessing and modifying the priority queue. Collectively, these refinements
are anticipated to contribute to a better performance.

6 Code

6.1 maze generator.py

from tk i n t e r import ∗
from random import randint

de f generate maze (ms ) :
v i s i t e d c e l l s = [ ]
wa l l s = [ ]
r e v i s i t e d c e l l s = [ ]

maze = [ [ 0 f o r in range (ms ) ] f o r in range (ms ) ]

de f check ne ighbours ( ccr , ccc ) :
ne ighbours = [

[ ccr , ccc − 1 , cc r − 1 , ccc − 2 ,
ccr , ccc − 2 , cc r + 1 , ccc − 2 ,
c c r − 1 , ccc − 1 , cc r + 1 , ccc − 1 ] , # l e f t
[ ccr , ccc + 1 , cc r − 1 , ccc + 2 ,
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ccr , ccc + 2 , cc r + 1 , ccc + 2 ,
cc r − 1 , ccc + 1 , cc r + 1 , ccc + 1 ] , # r i gh t
[ c c r − 1 , ccc , c c r − 2 , ccc − 1 ,
c c r − 2 , ccc , c c r − 2 , ccc + 1 ,
cc r − 1 , ccc − 1 , cc r − 1 , ccc + 1 ] , # top
[ cc r + 1 , ccc , c c r + 2 , ccc − 1 ,
c c r + 2 , ccc , c c r + 2 , ccc + 1 , cc r + 1 ,
ccc − 1 , cc r + 1 , ccc + 1 ] ] # bottom

v i s i t a b l e n e i g hb ou r s = [ ]
f o r i in ne ighbours :

i f 0 < i [ 0 ] < (ms − 1) and 0 < i [ 1 ] < (ms − 1 ) :
i f maze [ i [ 2 ] ] [ i [ 3 ] ] or maze [ i [ 4 ] ] [ i [ 5 ] ] or
maze [ i [ 6 ] ] [ i [ 7 ] ] or maze [ i [ 8 ] ] [ i [ 9 ] ] or
maze [ i [ 1 0 ] ] [ i [ 1 1 ] ] :

wa l l s . append ( i [ 0 : 2 ] )
e l s e :

v i s i t a b l e n e i g hb ou r s . append ( i [ 0 : 2 ] )
r e turn v i s i t a b l e n e i g hb ou r s

s c r = randint (1 , ms − 2)
scc = ms − 2
# s t a r t c o l o r = ’Green ’
ccr , ccc = scr , s c c

maze [ c c r ] [ ccc ] = 1
f i n i s h e d = False
whi l e not f i n i s h e d :

v i s i t a b l e n e i g hb ou r s = check ne ighbours ( ccr , ccc )
i f l en ( v i s i t a b l e n e i g hb ou r s ) != 0 :

d = randint (1 , l en ( v i s i t a b l e n e i g hb ou r s ) ) − 1
ncr , ncc = v i s i t a b l e n e i g hb ou r s [ d ]
maze [ ncr ] [ ncc ] = 1
v i s i t e d c e l l s . append ( [ ncr , ncc ] )
ccr , ccc = ncr , ncc

i f l en ( v i s i t a b l e n e i g hb ou r s ) == 0 :
t ry :

ccr , ccc = v i s i t e d c e l l s . pop ( )
r e v i s i t e d c e l l s . append ( [ ccr , ccc ] )

except :
f i n i s h e d = True

maze str = ””
f l a t maze = [ item f o r s u b l i s t in maze [1 : −1 ] f o r item in s u b l i s t [ 1 : −1 ] ]
output = ’ , ’ . j o i n (map( s t r , map( int , f l a t maze ) ) )
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re turn output

# Write the f l a t t e n e d maze to a text f i l e
with open ( ’ maze examples . txt ’ , ’w’ ) as f i l e :

f o r i in range ( 1 0 0 ) :
maze = generate maze (102)
f i l e . wr i t e (maze + ’\n ’ )

6.2 sequential.hs

import Data . L i s t ( s o r t )
import Data . Function ( on )
import Data . L i s t . S p l i t ( sp l i tOn )
import Data . L i s t . S p l i t ( chunksOf )

type Pos i t i on = ( Int , Int )
type Maze = [ [ Int ] ]

data Node = Node
{ po s i t i o n : : Po s i t i on
, gCost : : Int
, hCost : : Int
, parent : : Maybe Node
}

i n s t anc e Eq Node where
(==) = (==) ‘ on ‘ p o s i t i o n

in s t anc e Ord Node where
compare = compare ‘ on ‘ (\ node −> gCost node + hCost node )

i n i t i a lNod e : : Maze −> Node
i n i t i a lNod e maze = Node { po s i t i o n = (0 , 0 ) , gCost = 0 , hCost =
h e u r i s t i c maze (0 , 0 ) , parent = Nothing}

i sGoa l : : Maze −> Pos i t i on −> Bool
i sGoa l maze pos = pos == ( length maze − 1 , l ength ( head maze ) − 1)

expandNode : : Maze −> Node −> [ Node ]
expandNode maze node =

l e t (x , y ) = po s i t i o n node
ne ighbors = f i l t e r (\ ( dx , dy ) −> i sVa l i dPo s i t i o n maze
(x + dx , y + dy ) ) [ ( 1 , 0 ) , (−1 , 0 ) , (0 , 1 ) , (0 , −1)]

in map (\ ( dx , dy ) −> Node { po s i t i o n = (x + dx , y + dy ) ,
gCost = 0 , hCost = 0 , parent = Just node }) ne ighbors
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updateCosts : : Maze −> Node −> [ Node ] −> [ Node ]
updateCosts maze parent nodes =

map
(\ node −>

l e t g = gCost parent + 1
h = h e u r i s t i c maze ( p o s i t i o n node )

in node {gCost = g , hCost = h , parent = Just parent })
nodes

−− Heu r i s t i c func t i on : Manhattan Distance
h e u r i s t i c : : Maze −> Pos i t i on −> Int
h e u r i s t i c maze (x , y ) = abs (x − goalX ) + abs (y − goalY )

where
goalX = length maze − 1
goalY = length ( head maze ) − 1

i sVa l i dPo s i t i o n : : Maze −> Pos i t i on −> Bool
i sVa l i dPo s i t i o n maze (x , y ) =

x >= 0 && y >= 0 && x < l ength maze && y < l ength ( head maze )
&& (maze ! ! x ! ! y ) == 1

extractPath : : Node −> [ Po s i t i on ]
extractPath node = go node [ ]

where
go (Node pos ( Just parent ) ) acc = go parent ( pos : acc )
go acc = (0 , 0) : acc

−− Sequent i a l A∗
a s t a r : : Maze −> Maybe [ Pos i t i on ]
a s t a r maze = case go [ i n i t i a lNod e maze ] [ ] o f

Just node −> Just ( extractPath node )
Nothing −> Nothing
where

go [ ] = Nothing
go ( cur rent : r e s t ) v i s i t e d

| i sGoa l maze ( p o s i t i o n cur rent ) = Just cur rent
| otherwi s e =

l e t ne ighbors = f i l t e r (\n −> notElem ( po s i t i o n n) v i s i t e d )
( expandNode maze cur rent )

newNodes = updateCosts maze cur rent ne ighbors
sortedNodes = so r t ( r e s t ++ newNodes )

in go sortedNodes ( p o s i t i o n cur rent : v i s i t e d )

d iv ide IntoArray : : S t r ing −> [ [ Int ] ]
d iv ide IntoArray mazeString =
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chunksOf 100 (map read ( sp l i tOn ” ,” mazeString ) )

pr intPath : : Maybe [ Pos i t i on ] −> IO ( )
pr intPath Nothing = putStrLn ”No path found . ”
pr intPath ( Just path ) = putStrLn $ ”Path : ” ++ show path
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
main : : IO ( )
main = do

content <− r e adF i l e ”maze examples . txt ”
l e t mazeStr ings = l i n e s content

mazes = map div ide IntoArray mazeStr ings
s o l u t i o n = map as ta r mazes

mapM printPath s o l u t i o n

6.3 ParallelCost.hs

import Data . L i s t ( s o r t )
import Data . Function ( on )
import Control . P a r a l l e l . S t r a t e g i e s ( parList , rseq , withStrategy )
import Data . L i s t . S p l i t ( sp l i tOn )
import Data . L i s t . S p l i t ( chunksOf )

type Pos i t i on = ( Int , Int )
type Maze = [ [ Int ] ]

data Node = Node
{ po s i t i o n : : Po s i t i on
, gCost : : Int
, hCost : : Int
, parent : : Maybe Node
}

i n s t anc e Eq Node where
(==) = (==) ‘ on ‘ p o s i t i o n

in s t anc e Ord Node where
compare = compare ‘ on ‘ (\ node −> gCost node + hCost node )

i n i t i a lNod e : : Maze −> Node
i n i t i a lNod e maze = Node { po s i t i o n = (0 , 0 ) , gCost = 0 , hCost =
h e u r i s t i c maze (0 , 0 ) , parent = Nothing}

i sGoa l : : Maze −> Pos i t i on −> Bool
i sGoa l maze pos = pos == ( length maze − 1 , l ength ( head maze ) − 1)
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expandNode : : Maze −> Node −> [ Node ]
expandNode maze node =

l e t (x , y ) = po s i t i o n node
ne ighbors =
f i l t e r (\ ( dx , dy ) −> i sVa l i dPo s i t i o n maze (x + dx , y + dy ) )
[ ( 1 , 0 ) , (−1 , 0 ) , (0 , 1 ) , (0 , −1)]

in map (\ ( dx , dy ) −> Node { po s i t i o n = (x + dx , y + dy ) ,
gCost = 0 , hCost = 0 , parent = Just node }) ne ighbors

updateCosts : : Maze −> Node −> [ Node ] −> [ Node ]
updateCosts maze parent nodes =

map
(\ node −>

l e t g = gCost parent + 1
h = h e u r i s t i c maze ( p o s i t i o n node )

in node {gCost = g , hCost = h , parent = Just parent })
nodes

−− Heu r i s t i c func t i on : Manhattan Distance
h e u r i s t i c : : Maze −> Pos i t i on −> Int
h e u r i s t i c maze (x , y ) = abs (x − goalX ) + abs (y − goalY )

where
goalX = length maze − 1
goalY = length ( head maze ) − 1

i sVa l i dPo s i t i o n : : Maze −> Pos i t i on −> Bool
i sVa l i dPo s i t i o n maze (x , y ) =

x >= 0 && y >= 0 && x < l ength maze && y < l ength ( head maze )
&& (maze ! ! x ! ! y ) == 1

extractPath : : Node −> [ Po s i t i on ]
extractPath node = go node [ ]

where
go (Node pos ( Just parent ) ) acc = go parent ( pos : acc )
go acc = (0 , 0) : acc

as ta rPara l l e lUpdateCost : : Maze −> Maybe [ Pos i t i on ]
a s ta rPara l l e lUpdateCost maze = case go [ i n i t i a lNod e maze ] [ ] o f

Just node −> Just ( extractPath node )
Nothing −> Nothing
where

go [ ] = Nothing
go ( cur rent : r e s t ) v i s i t e d

| i sGoa l maze ( p o s i t i o n cur rent ) = Just cur rent
| otherwi s e =
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l e t ne ighbors =
f i l t e r (\n −> notElem ( po s i t i o n n) v i s i t e d )
( expandNode maze cur rent )

newNodes = withStrategy ( parL i s t r s eq )
( updateCosts maze cur rent ne ighbors )
sortedNodes = so r t ( r e s t ++ newNodes )

in go sortedNodes ( p o s i t i o n cur rent : v i s i t e d )

d iv ide IntoArray : : S t r ing −> [ [ Int ] ]
d iv ide IntoArray mazeString =
chunksOf 100 (map read ( sp l i tOn ” ,” mazeString ) )

pr intPath : : Maybe [ Pos i t i on ] −> IO ( )
pr intPath Nothing = putStrLn ”No path found . ”
pr intPath ( Just path ) = putStrLn $ ”Path : ” ++ show path
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
main : : IO ( )
main = do

content <− r e adF i l e ”maze examples . txt ”
l e t mazeStr ings = l i n e s content

mazes = map div ide IntoArray mazeStr ings
s o l u t i o n = map astarPara l l e lUpdateCost mazes

mapM printPath s o l u t i o n

6.4 ParallelNodes.hs

import Data . L i s t ( s o r t )
import Data . Function ( on )
import Control . P a r a l l e l . S t r a t e g i e s (parMap , rpar )
import Data . L i s t . S p l i t ( sp l i tOn )
import Data . L i s t . S p l i t ( chunksOf )

type Pos i t i on = ( Int , Int )
type Maze = [ [ Int ] ]

data Node = Node
{ po s i t i o n : : Po s i t i on
, gCost : : Int
, hCost : : Int
, parent : : Maybe Node
}

i n s t anc e Eq Node where
(==) = (==) ‘ on ‘ p o s i t i o n
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i n s t anc e Ord Node where
compare = compare ‘ on ‘ (\ node −> gCost node + hCost node )

i n i t i a lNod e : : Maze −> Node
i n i t i a lNod e maze = Node { po s i t i o n = (0 , 0 ) , gCost = 0 ,
hCost = h e u r i s t i c maze (0 , 0 ) , parent = Nothing}

i sGoa l : : Maze −> Pos i t i on −> Bool
i sGoa l maze pos = pos == ( length maze − 1 , l ength ( head maze ) − 1)

expandNode : : Maze −> Node −> [ Node ]
expandNode maze node =

l e t (x , y ) = po s i t i o n node
ne ighbors = f i l t e r (\ ( dx , dy ) −> i sVa l i dPo s i t i o n maze
(x + dx , y + dy ) ) [ ( 1 , 0 ) , (−1 , 0 ) , (0 , 1 ) , (0 , −1)]

in map (\ ( dx , dy ) −> Node { po s i t i o n = (x + dx , y + dy ) ,
gCost = 0 , hCost = 0 , parent = Just node }) ne ighbors

updateCosts : : Maze −> Node −> [ Node ] −> [ Node ]
updateCosts maze parent nodes =

map
(\ node −>

l e t g = gCost parent + 1
h = h e u r i s t i c maze ( p o s i t i o n node )

in node {gCost = g , hCost = h , parent = Just parent })
nodes

−− Heu r i s t i c func t i on : Manhattan Distance
h e u r i s t i c : : Maze −> Pos i t i on −> Int
h e u r i s t i c maze (x , y ) = abs (x − goalX ) + abs (y − goalY )

where
goalX = length maze − 1
goalY = length ( head maze ) − 1

i sVa l i dPo s i t i o n : : Maze −> Pos i t i on −> Bool
i sVa l i dPo s i t i o n maze (x , y ) =

x >= 0 && y >= 0 && x < l ength maze && y < l ength ( head maze )
&& (maze ! ! x ! ! y ) == 1

extractPath : : Node −> [ Po s i t i on ]
extractPath node = go node [ ]

where
go (Node pos ( Just parent ) ) acc = go parent ( pos : acc )
go acc = (0 , 0) : acc
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−− Pa r a l l e l p r o c e s s i ng o f top 5 nodes in p r i o r i t y queue
as ta r5 : : Maze −> Maybe [ Pos i t i on ]
a s ta r5 maze = case go [ i n i t i a lNod e maze ] [ ] o f

Just node −> Just ( extractPath node )
Nothing −> Nothing
where

go [ ] = Nothing
go ( cur rent : r e s t ) v i s i t e d

| i sGoa l maze ( p o s i t i o n cur rent ) = Just cur rent
| otherwi s e =

l e t ne ighbors = f i l t e r
(\n −> notElem ( po s i t i o n n) v i s i t e d )
( expandNode maze cur rent )

newNodes = updateCosts maze cur rent ne ighbors
sortedNodes = so r t ( r e s t ++ newNodes )
top5 = take 5 sortedNodes −− Se l e c t the top 5 nodes
expandedNodes = parMap rpar (\n −> go [ n ]
( p o s i t i o n cur rent : v i s i t e d ) ) top5

in f o l d r (\ r e s u l t acc −> case r e s u l t o f Just node ’ −>
Just node ’ ; Nothing −> acc ) Nothing expandedNodes

d iv ide IntoArray : : S t r ing −> [ [ Int ] ]
d iv ide IntoArray mazeString =
chunksOf 100 (map read ( sp l i tOn ” ,” mazeString ) )

pr intPath : : Maybe [ Pos i t i on ] −> IO ( )
pr intPath Nothing = putStrLn ”No path found . ”
pr intPath ( Just path ) = putStrLn $ ”Path : ” ++ show path

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
main : : IO ( )
main = do

content <− r e adF i l e ”maze examples . txt ”
l e t mazeStr ings = l i n e s content

mazes = map div ide IntoArray mazeStr ings
s o l u t i o n = map as ta r5 mazes

mapM printPath s o l u t i o n

6.5 ParallelMazeStatic.hs

import Data . L i s t ( s o r t )
import Data . Function ( on )
import Control . P a r a l l e l . S t r a t e g i e s ( rpar , rseq , runEval )
import Data . L i s t . S p l i t ( sp l i tOn )
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import Data . L i s t . S p l i t ( chunksOf )
import Control . DeepSeq ( f o r c e )

type Pos i t i on = ( Int , Int )
type Maze = [ [ Int ] ]

data Node = Node
{ po s i t i o n : : Po s i t i on
, gCost : : Int
, hCost : : Int
, parent : : Maybe Node
}

i n s t anc e Eq Node where
(==) = (==) ‘ on ‘ p o s i t i o n

in s t anc e Ord Node where
compare = compare ‘ on ‘ (\ node −> gCost node + hCost node )

i n i t i a lNod e : : Maze −> Node
i n i t i a lNod e maze = Node { po s i t i o n = (0 , 0 ) ,
gCost = 0 , hCost = h e u r i s t i c maze (0 , 0 ) , parent = Nothing}

i sGoa l : : Maze −> Pos i t i on −> Bool
i sGoa l maze pos = pos == ( length maze − 1 , l ength ( head maze ) − 1)

expandNode : : Maze −> Node −> [ Node ]
expandNode maze node =

l e t (x , y ) = po s i t i o n node
ne ighbors =
f i l t e r (\ ( dx , dy ) −> i sVa l i dPo s i t i o n maze (x + dx , y + dy ) )
[ ( 1 , 0 ) , (−1 , 0 ) , (0 , 1 ) , (0 , −1)]

in map (\ ( dx , dy ) −> Node { po s i t i o n = (x + dx , y + dy ) ,
gCost = 0 , hCost = 0 , parent = Just node }) ne ighbors

updateCosts : : Maze −> Node −> [ Node ] −> [ Node ]
updateCosts maze parent nodes =

map
(\ node −>

l e t g = gCost parent + 1
h = h e u r i s t i c maze ( p o s i t i o n node )

in node {gCost = g , hCost = h , parent = Just parent })
nodes

−− Heu r i s t i c func t i on : Manhattan Distance
h e u r i s t i c : : Maze −> Pos i t i on −> Int
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h e u r i s t i c maze (x , y ) = abs (x − goalX ) + abs (y − goalY )
where

goalX = length maze − 1
goalY = length ( head maze ) − 1

i sVa l i dPo s i t i o n : : Maze −> Pos i t i on −> Bool
i sVa l i dPo s i t i o n maze (x , y ) =

x >= 0 && y >= 0 && x < l ength maze && y < l ength ( head maze )
&& (maze ! ! x ! ! y ) == 1

extractPath : : Node −> [ Po s i t i on ]
extractPath node = go node [ ]

where
go (Node pos ( Just parent ) ) acc = go parent ( pos : acc )
go acc = (0 , 0) : acc

−− Sequent i a l A∗
a s t a r : : Maze −> Maybe [ Pos i t i on ]
a s t a r maze = case go [ i n i t i a lNod e maze ] [ ] o f

Just node −> Just ( extractPath node )
Nothing −> Nothing
where

go [ ] = Nothing
go ( cur rent : r e s t ) v i s i t e d

| i sGoa l maze ( p o s i t i o n cur rent ) = Just cur rent
| otherwi s e =

l e t ne ighbors =
f i l t e r (\n −> notElem ( po s i t i o n n) v i s i t e d )
( expandNode maze cur rent )

newNodes = updateCosts maze cur rent ne ighbors
sortedNodes = so r t ( r e s t ++ newNodes )

in go sortedNodes ( p o s i t i o n cur rent : v i s i t e d )

d iv ide IntoArray : : S t r ing −> [ [ Int ] ]
d iv ide IntoArray mazeString =
chunksOf 100 (map read ( sp l i tOn ” ,” mazeString ) )

pr intPath : : Maybe [ Pos i t i on ] −> IO ( )
pr intPath Nothing = putStrLn ”No path found . ”
pr intPath ( Just path ) = putStrLn $ ”Path : ” ++ show path

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
main : : IO ( )
main = do

content <− r e adF i l e ”maze examples . txt ”
l e t mazeStr ings = l i n e s content
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mazes = map div ide IntoArray mazeStr ings
−−−−−−−−−−−−−−−−− s t a t i c p a r t i t i o n i n g −−−−−−−−−−−−−−−−−−−−−−
( as , bs ) = sp l i tA t ( l ength mazes ‘ div ‘ 2) mazes
s o l u t i o n = runEval $ do

as ’ <− rpar ( f o r c e (map as ta r as ) )
bs ’ <− rpar ( f o r c e (map as ta r bs ) )
<− r s eq as ’
<− r s eq bs ’

r e turn ( as ’++ bs ’ )

mapM printPath s o l u t i o n

6.6 ParallelMazeDynamic.hs

import Data . L i s t ( s o r t )
import Data . Function ( on )
import Control . P a r a l l e l . S t r a t e g i e s ( rpar , runEval , Eval )
import Data . L i s t . S p l i t ( sp l i tOn )
import Data . L i s t . S p l i t ( chunksOf )

type Pos i t i on = ( Int , Int )
type Maze = [ [ Int ] ]

data Node = Node
{ po s i t i o n : : Po s i t i on
, gCost : : Int
, hCost : : Int
, parent : : Maybe Node
}

i n s t anc e Eq Node where
(==) = (==) ‘ on ‘ p o s i t i o n

in s t anc e Ord Node where
compare = compare ‘ on ‘ (\ node −> gCost node + hCost node )

i n i t i a lNod e : : Maze −> Node
i n i t i a lNod e maze = Node { po s i t i o n = (0 , 0 ) ,
gCost = 0 , hCost = h e u r i s t i c maze (0 , 0 ) , parent = Nothing}

i sGoa l : : Maze −> Pos i t i on −> Bool
i sGoa l maze pos = pos == ( length maze − 1 , l ength ( head maze ) − 1)

expandNode : : Maze −> Node −> [ Node ]
expandNode maze node =
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l e t (x , y ) = po s i t i o n node
ne ighbors = f i l t e r (\ ( dx , dy ) −>
i sVa l i dPo s i t i o n maze (x + dx , y + dy ) )
[ ( 1 , 0 ) , (−1 , 0 ) , (0 , 1 ) , (0 , −1)]

in map (\ ( dx , dy ) −> Node { po s i t i o n =
(x + dx , y + dy ) , gCost = 0 , hCost = 0 , parent =
Just node }) ne ighbors

updateCosts : : Maze −> Node −> [ Node ] −> [ Node ]
updateCosts maze parent nodes =

map
(\ node −>

l e t g = gCost parent + 1
h = h e u r i s t i c maze ( p o s i t i o n node )

in node {gCost = g , hCost = h , parent = Just parent })
nodes

−− Heu r i s t i c func t i on : Manhattan Distance
h e u r i s t i c : : Maze −> Pos i t i on −> Int
h e u r i s t i c maze (x , y ) = abs (x − goalX ) + abs (y − goalY )

where
goalX = length maze − 1
goalY = length ( head maze ) − 1

i sVa l i dPo s i t i o n : : Maze −> Pos i t i on −> Bool
i sVa l i dPo s i t i o n maze (x , y ) =

x >= 0 && y >= 0 && x < l ength maze &&
y < l ength ( head maze ) && (maze ! ! x ! ! y ) == 1

extractPath : : Node −> [ Po s i t i on ]
extractPath node = go node [ ]

where
go (Node pos ( Just parent ) ) acc = go parent ( pos : acc )
go acc = (0 , 0) : acc

−− Sequent i a l A∗
a s t a r : : Maze −> Maybe [ Pos i t i on ]
a s t a r maze = case go [ i n i t i a lNod e maze ] [ ] o f

Just node −> Just ( extractPath node )
Nothing −> Nothing
where

go [ ] = Nothing
go ( cur rent : r e s t ) v i s i t e d

| i sGoa l maze ( p o s i t i o n cur rent ) = Just cur rent
| otherwi s e =

l e t ne ighbors = f i l t e r
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(\n −> notElem ( po s i t i o n n) v i s i t e d )
( expandNode maze cur rent )

newNodes = updateCosts maze cur rent ne ighbors
sortedNodes = so r t ( r e s t ++ newNodes )

in go sortedNodes ( p o s i t i o n cur rent : v i s i t e d )

parMap ’ : : ( a −> b) −> [ a ] −> Eval [ b ]
parMap ’ [ ] = return [ ]
parMap ’ f ( a : as ) = do

b <− rpar ( f a )
bs <− parMap ’ f as
re turn (b : bs )

d iv ide IntoArray : : S t r ing −> [ [ Int ] ]
d iv ide IntoArray mazeString = chunksOf 100
(map read ( sp l i tOn ” ,” mazeString ) )

pr intPath : : Maybe [ Pos i t i on ] −> IO ( )
pr intPath Nothing = putStrLn ”No path found . ”
pr intPath ( Just path ) = putStrLn $ ”Path : ” ++ show path

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
main : : IO ( )
main = do

content <− r e adF i l e ”maze examples . txt ”
l e t mazeStr ings = l i n e s content

mazes = map div ide IntoArray mazeStr ings
−−−−−−−−−−−−−−−−− dynamic p a r t i t i o n i n g −−−−−−−−−−−−−−−−−−−−−
s o l u t i o n = runEval (parMap ’ a s t a r mazes )

mapM printPath s o l u t i o n

6.7 tests.hs

import Data . L i s t ( s o r t )
import Data . Function ( on )
import Data . L i s t . S p l i t ( sp l i tOn )
import Data . L i s t . S p l i t ( chunksOf )
import q u a l i f i e d Test . HUnit as HUnit

type Pos i t i on = ( Int , Int )
type Maze = [ [ Int ] ]

data Node = Node
{ po s i t i o n : : Po s i t i on
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, gCost : : Int
, hCost : : Int
, parent : : Maybe Node
}

i n s t anc e Eq Node where
(==) = (==) ‘ on ‘ p o s i t i o n

in s t anc e Ord Node where
compare = compare ‘ on ‘ (\ node −> gCost node + hCost node )

i n i t i a lNod e : : Maze −> Node
i n i t i a lNod e maze = Node { po s i t i o n = (0 , 0 ) ,
gCost = 0 , hCost = h e u r i s t i c maze (0 , 0 ) , parent = Nothing}

i sGoa l : : Maze −> Pos i t i on −> Bool
i sGoa l maze pos = pos == ( length maze − 1 , l ength ( head maze ) − 1)

expandNode : : Maze −> Node −> [ Node ]
expandNode maze node =

l e t (x , y ) = po s i t i o n node
ne ighbors = f i l t e r (\ ( dx , dy ) −>
i sVa l i dPo s i t i o n maze (x + dx , y + dy ) )
[ ( 1 , 0 ) , (−1 , 0 ) , (0 , 1 ) , (0 , −1)]

in map (\ ( dx , dy ) −> Node { po s i t i o n =
(x + dx , y + dy ) , gCost = 0 , hCost = 0 , parent = Just node })
ne ighbors

updateCosts : : Maze −> Node −> [ Node ] −> [ Node ]
updateCosts maze parent nodes =

map
(\ node −>

l e t g = gCost parent + 1
h = h e u r i s t i c maze ( p o s i t i o n node )

in node {gCost = g , hCost = h , parent = Just parent })
nodes

−− Heu r i s t i c func t i on : Manhattan Distance
h e u r i s t i c : : Maze −> Pos i t i on −> Int
h e u r i s t i c maze (x , y ) = abs (x − goalX ) + abs (y − goalY )

where
goalX = length maze − 1
goalY = length ( head maze ) − 1

i sVa l i dPo s i t i o n : : Maze −> Pos i t i on −> Bool
i sVa l i dPo s i t i o n maze (x , y ) =
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x >= 0 && y >= 0 && x < l ength maze &&
y < l ength ( head maze ) && (maze ! ! x ! ! y ) == 1

extractPath : : Node −> [ Po s i t i on ]
extractPath node = go node [ ]

where
go (Node pos ( Just parent ) ) acc = go parent ( pos : acc )
go acc = (0 , 0) : acc

−− Sequent i a l A∗
a s t a r : : Maze −> Maybe [ Pos i t i on ]
a s t a r maze = case go [ i n i t i a lNod e maze ] [ ] o f

Just node −> Just ( extractPath node )
Nothing −> Nothing
where

go [ ] = Nothing
go ( cur rent : r e s t ) v i s i t e d

| i sGoa l maze ( p o s i t i o n cur rent ) = Just cur rent
| otherwi s e =

l e t ne ighbors = f i l t e r
(\n −> notElem ( po s i t i o n n) v i s i t e d )
( expandNode maze cur rent )

newNodes = updateCosts maze cur rent ne ighbors
sortedNodes = so r t ( r e s t ++ newNodes )

in go sortedNodes ( p o s i t i o n cur rent : v i s i t e d )

−−−−−−−−−−−−−−−−−−−−−− Sample mazes f o r t e s t i n g −−−−−−−−−−−−−−−−−−−−−−
−− Example 1 : s e e i f A∗ can f i nd the SHORTEST path
sampleMaze1 : : Maze
sampleMaze1 =

[ [ 1 , 1 , 1 , 1 , 1 ] ,
[ 1 , 0 , 1 , 0 , 1 ] ,
[ 1 , 0 , 1 , 0 , 1 ] ,
[ 1 , 0 , 1 , 0 , 1 ] ,
[ 1 , 1 , 1 , 0 , 1 ]

]
−− So lu t i on 1
sampleSo lut ion1 : : [ Po s i t i on ]
sampleSo lut ion1 = [ ( 0 , 0 ) , ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 1 , 4 ) ,
( 2 , 4 ) , ( 3 , 4 ) , ( 4 , 4 ) ]
−− another path but not the s h o r t e s t
−− ( 0 , 0 ) , ( 1 , 0 ) , ( 2 , 0 ) , ( 3 , 0 ) , ( 4 , 0 ) , ( 4 , 1 ) , ( 4 , 2 ) , ( 3 , 2 ) ,
( 2 , 2 ) , ( 1 , 2 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 1 , 4 ) , ( 2 , 4 ) , ( 3 , 4 ) , ( 4 , 4 )

−− Example 2
sampleMaze2 : : Maze
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sampleMaze2 =
[ [ 1 , 0 , 1 , 1 , 1 ] ,

[ 1 , 0 , 1 , 0 , 1 ] ,
[ 1 , 0 , 1 , 0 , 1 ] ,
[ 1 , 1 , 1 , 0 , 1 ] ,
[ 1 , 0 , 1 , 0 , 1 ]

]
−− So lu t i on 2
sampleSo lut ion2 : : [ Po s i t i on ]
sampleSo lut ion2 = [ ( 0 , 0 ) , ( 1 , 0 ) , ( 2 , 0 ) , ( 3 , 0 ) , ( 3 , 1 ) , ( 3 , 2 ) ,
( 2 , 2 ) , ( 1 , 2 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 1 , 4 ) , ( 2 , 4 ) , ( 3 , 4 ) , ( 4 , 4 ) ]

−− Example 3 : s e e i f A∗ can f i nd a path in a more compl icated maze , and move in a l l 4 d i r e c t i o n s i f p o s s i b l e
sampleMaze3 : : Maze
sampleMaze3 =

[ [ 1 , 1 , 1 , 1 , 1 , 1 , 0 , 1 , 1 , 0 ] ,
[ 0 , 0 , 1 , 1 , 0 , 1 , 1 , 0 , 1 , 0 ] ,
[ 1 , 1 , 1 , 0 , 1 , 0 , 1 , 1 , 0 , 1 ] ,
[ 1 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ] ,
[ 0 , 1 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 1 ] ,
[ 1 , 0 , 1 , 0 , 1 , 1 , 1 , 0 , 1 , 0 ] ,
[ 0 , 1 , 1 , 1 , 0 , 0 , 1 , 1 , 0 , 1 ] ,
[ 1 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 1 , 0 ] ,
[ 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 ] ,
[ 1 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 1 , 1 ] ]

−− So lu t i on 3
sampleSo lut ion3 : : [ Po s i t i on ]
sampleSo lut ion3 = [ ( 0 , 0 ) , ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) ,
( 0 , 5 ) , ( 1 , 5 ) , ( 1 , 6 ) , ( 2 , 6 ) , ( 3 , 6 ) , ( 3 , 5 ) , ( 4 , 5 ) , ( 5 , 5 ) ,
( 5 , 6 ) , ( 6 , 6 ) , ( 7 , 6 ) , ( 7 , 5 ) , ( 7 , 4 ) , ( 8 , 4 ) , ( 9 , 4 ) , ( 9 , 5 ) ,
( 9 , 6 ) , ( 9 , 7 ) , ( 9 , 8 ) , ( 9 , 9 ) ]

−− Example 4 : s e e the edge case where the re are no paths in a maze
sampleMaze4 : : Maze
sampleMaze4 =

[ [ 1 , 1 , 1 , 1 , 0 , 1 , 1 , 0 , 0 , 1 , 1 , 1 , 0 , 1 , 0 ] ,
[ 1 , 1 , 0 , 1 , 1 , 0 , 1 , 0 , 1 , 1 , 0 , 0 , 1 , 1 , 0 ] ,
[ 1 , 0 , 1 , 0 , 1 , 1 , 0 , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 1 ] ,
[ 0 , 1 , 0 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 0 , 0 , 1 , 1 , 0 ] ,
[ 1 , 0 , 1 , 0 , 1 , 0 , 0 , 1 , 1 , 0 , 1 , 1 , 0 , 0 , 1 ] ,
[ 0 , 1 , 0 , 1 , 0 , 1 , 1 , 0 , 1 , 1 , 1 , 0 , 1 , 1 , 0 ] ,
[ 1 , 0 , 1 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 1 ] ,
[ 0 , 1 , 0 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 0 , 1 , 1 , 0 ] ,
[ 1 , 0 , 1 , 1 , 1 , 1 , 0 , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 1 ] ,
[ 0 , 1 , 0 , 1 , 0 , 1 , 1 , 0 , 1 , 1 , 0 , 0 , 1 , 1 , 0 ] ,
[ 1 , 0 , 1 , 1 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 1 ] ,
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[ 0 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 , 0 , 1 , 1 , 0 ] ,
[ 1 , 0 , 1 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 1 ] ,
[ 0 , 1 , 0 , 1 , 0 , 1 , 1 , 0 , 1 , 1 , 0 , 0 , 1 , 1 , 1 ] ,
[ 1 , 0 , 1 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 1 ] ]

−− So lu t i on 4 i s Nothing

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− Def ine t e s t ca s e s with an expected s o l u t i o n
tes tCase1 : : HUnit . Test
tes tCase1 = HUnit . TestCase $ HUnit . a s s e r tEqua l

”Test Case 1”
( Just sampleSo lut ion1 )
( a s t a r sampleMaze1 )

tes tCase2 : : HUnit . Test
tes tCase2 = HUnit . TestCase $ HUnit . a s s e r tEqua l

”Test Case 2”
( Just sampleSo lut ion2 )
( a s t a r sampleMaze2 )

tes tCase3 : : HUnit . Test
tes tCase3 = HUnit . TestCase $ HUnit . a s s e r tEqua l

”Test Case 3”
( Just sampleSo lut ion3 )
( a s t a r sampleMaze3 )

tes tCase4 : : HUnit . Test
tes tCase4 = HUnit . TestCase $ HUnit . a s s e r tEqua l

”Test Case 4”
Nothing
( a s t a r sampleMaze4 )

main : : IO ( )
main = do

−− Add your t e s t ca s e s here
l e t t e s t S u i t e = HUnit . Tes tL i s t
[ testCase1 , testCase2 , testCase3 , te s tCase4 ]

−− Run the t e s t s
HUnit . runTestTT t e s t Su i t e >>= pr in t
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