
COMS4995 Parallel Functional Programming Project

Maximal Clique Problem with Bron–Kerbosch Algorithm

Xuezhen Wang, Songheng Yin

Uni: ww2604, sy3079

1 Overview

The objective of this project is to develop an implementation of the Bron-Kerbosch algorithm in Haskell, specifically
designed to identify all maximal cliques in any given undirected graph. This implementation will comprise both a
sequential version and a variety of parallelized variants. The key goal is to conduct a thorough performance analysis
of these versions, with a focus on evaluating the impact and efficacy of parallelism in the context of this algorithm.

2 Problem Formulation

2.1 Definitions

In an undirected graph G = (V,E). A clique C is a subset of the vertices, C ⊆ V , such that every two distinct
vertices are adjacent, that is, the induced subgraph by C is a complete graph K|C|.

A maximal clique is a clique that cannot be extended by including one more adjacent vertex, that is, a clique
which does not exist exclusively within the vertex set of a larger clique. A maximum clique of a graph is a clique
such that there is no clique with more vertices. Moreover, the clique number ω(G) of a graph G is the number of
vertices in a maximum clique in G. Note the difference between maximal clique and maximum clique: a maximum
clique is always maximal, the converse is not always true.

2.2 Problem Description

The clique decision problem asking for if a clique of size k exists in the given graph. It was one of Richard Karp’s
original 21 problems shown NP-complete in Cook [1971] and Karp [1972]. Our task, a variant of the clique decision
problem, is to list all the maximal cliques given an undirected graph G. It is easy to know the problem is impossible
to be done in polynomial running time since it can derive the answer to the clique decision problem trivially. Therefore,
it is perfectly suitable to assess the effectiveness of parallelism as it is not an IO bounded problem.

2.3 Algorithm

The Bron–Kerbosch algorithm, designed by Bron and Kerbosch [1973], is an enumeration algorithm for finding all
maximal cliques in an undirected graph.

Algorithm 1 Bron–Kerbosch Algorithm

1: function BronKerbosch(R,P,X)
2: if P and X are both empty then
3: Report R as a maximal clique ▷ A maximal clique is found
4: end if
5: for each vertex v in P do
6: BronKerbosch(R ∪ {v}, P ∩N(v), X ∩N(v)) ▷ Explore extensions of R including v
7: P ← P \ {v} ▷ Remove v from potential clique extensions
8: X ← X ∪ {v} ▷ Add v to excluded set for this recursion level
9: end for

10: end function

The Bron-Kerbosch algorithm uses three sets R, P , and X to find maximal cliques in an undirected graph:

1. R (Reported Clique): This set starts empty and grows as the algorithm progresses. It represents the current
clique being constructed. When both P and X are empty, R is a maximal clique and is reported as such.

2. P (Potential Nodes): This set contains vertices that are connected to all vertices in R and might be included in
the clique. These are potential candidates to be added to R. The algorithm iteratively moves vertices from P
to R to explore the expansion of the current clique.

3. X (Excluded Nodes): This set also starts empty and contains vertices that have been considered for inclusion in
R and found not to lead to a maximal clique (in the current path of the search). It helps to avoid re-examining
the same vertex within the same recursive call.

1

3 Haskell Implementation

3.1 Deliverables

Basically, our compiled program has the following functionality:

• Usage: gen <mode> <args>..<args> <outfile>

• Usage: compute <readpath> <writepath> <mode> (<mode arg>)

• Usage: test <inputfile> <outputfile>

where:

• In generation mode (gen), the program aims to generate a graph into an output file. The generated file
for the graph contains two integers m and n at the first line, which represents the number of vertices and the
number of edges. In the following m lines, it contains ai and bi where 0 ≤ i < m for each line representing the
vertices connected by ith edge. There are two modes for graph generation, i.e., random and kclique, which take
different arguments.

• In computation mode (compute), the program aims to take an input file path for graph in the format as
specified above, an output file path for maximal cliques and a specified mode to compute all the maximal cliques.
For the output file format, each line contains a set of numbers indicating the vertex indices for the vertices in
the clique. Here we provide 5 modes, namely, sequential mode (seq), naive parallel mode (par naive),
basic parallel mode (par basic), chunked parallel mode (par chunked) and depth-limited parallel
mode (par depthLimited).

• In testing mode (test), the program takes a file path for input graph and the file path for the corresponding
output cliques to output Valid or Invalid.

For each of these functionalities, we will introduce them in detail in the later sections.

3.2 Data Structures

To enhance the conciseness and clarity of our code, we focus on the meticulous development of three core components:
theVertex type, theClique type, and theGraph class. This approach ensures that our code is not only streamlined
but also easily interpretable. The corresponding code is defined in DataStructures.hs

1 −− Basic Data Structures
2 type Vertex = Int
3 type Clique = [Vertex]
4 class Graph graph where
5 num vertices :: graph −> Int
6 num edges :: graph −> Int
7 vertices :: graph −> [Vertex]
8 is connected :: graph −> Vertex −> Vertex −> Bool
9 neighbours :: graph −> Vertex −> [Vertex]

3.3 Graph Generation

The project involves the implementation of graph generation functionalities. Two distinct algorithms were developed to
create graphs with varying properties. This section outlines the methodologies and justifications for these algorithms.

1. Algorithm 1: Straightforward Random Generation

• Methods: The first algorithm employs a straightforward random generation technique. It begins by
iterating over each pair of vertices. For each pair, an edge is added with a 50% probability, effectively
creating a random graph.

• Observation: However, an issue was observed with this method. Due to the randomness of edge creation,
the size of the largest clique (a subset of vertices where every two distinct vertices are adjacent) within
the generated graphs tends to be relatively small. This limits the application of the algorithm in scenarios
where larger cliques are necessary for analysis or simulation.

2. Algorithm 2: Clique-Ensured Graph Generation

• To overcome the limitations of the first algorithm, a second method was introduced with a specific focus
on the generation of a large clique within the graph. This algorithm guarantees the presence of a clique of
at least size k, which is a desirable property for certain types of graph analysis. The random connections
among the remaining vertices preserve the stochastic nature of the graph while ensuring the existence of a
substantial clique.

2

• Methods: The steps for this algorithm are as follows:

(a) Initially, a clique of size k is created by making the first k vertices fully connected.

(b) For the remaining n-k vertices, the previous random connection method is applied to add edges.

(c) Finally, the indices of the vertices are remapped to ensure uniformity and to avoid predictable patterns
in the graph structure.

Both algorithms serve distinct purposes within the project. The straightforward random generation provides a basic
approach to create random graphs, while the clique-ensured method offers a more structured graph with guaranteed
properties. The corresponding code is in GenerateGraph.hs

3.4 Sequential Implementation

The original Bron-Kerbosch algorithm maintains a state of three sets of vertices, i.e. the R,P,X sets as defined in the
algorithm. For an undirected graph G = (V,E). The initial state will be (∅, V, ∅), and the Bron-Kerbosch algorithm
stops when P = ∅ ∧X = ∅. The core segment in sequential version code is listed below. The function bronKerbosch

takes 3 parameters: R,P,X in order. And the function restrictVertices is used to find the neighborhood, which is
used in exploreCandidates to modify the Bron-Kerbosch state.

The complete code can be found in SeqBK.hs

1 getMaximalCliques :: Graph graph => graph −> [Clique]
2 getMaximalCliques graph = bronKerbosch [] (vertices graph) [] where
3 bronKerbosch :: Clique −> [Vertex] −> [Vertex] −> [Clique]
4 bronKerbosch partialClique candidateVertices excludedVertices
5 | null candidateVertices && null excludedVertices = [partialClique]
6 | otherwise = exploreCandidates candidateVertices excludedVertices
7 where
8 exploreCandidates :: [Vertex] −> [Vertex] −> [Clique]
9 exploreCandidates [] = []

10 exploreCandidates (currentVertex : remainingCandidates) currentExcluded =
11 bronKerbosch (currentVertex : partialClique)
12 (remainingCandidates ‘ restrictVertices ‘ currentVertex)
13 (currentExcluded ‘ restrictVertices ‘ currentVertex) ++
14 exploreCandidates remainingCandidates (currentVertex : currentExcluded)
15

16 restrictVertices :: [Vertex] −> Vertex −> [Vertex]
17 restrictVertices curvertices vertex = filter (is connected graph vertex) curvertices

3.5 Naive Parallel Implementation

Upon closer examination of the algorithm, the most direct approach to parallelizing it involves introducing a “spark”
— a lightweight thread—for each recursive call initiated. Essentially, within each iteration of the for loop, we initiate
a spark for the corresponding recursion before proceeding with the next iteration. To implement this parallelism, it
is remarkably simple: one need only alter two lines within the code originally written for sequential execution, i.e.
the exploreCandidates function. This minor modification has the potential to significantly enhance the performance
by leveraging concurrent computation. Due to its simplicity, we call it naive parallel implementation. The modified
section is attached below and the full implementation can be found in ParBK Naive.hs.

1 exploreCandidates :: [Vertex] −> [Vertex] −> [Clique]
2 exploreCandidates [] = []
3 exploreCandidates (currentVertex : remainingCandidates) currentExcluded =
4 let newCliques = bronKerbosch (currentVertex : partialClique)
5 (remainingCandidates ‘ restrictVertices ‘ currentVertex)
6 (currentExcluded ‘ restrictVertices ‘ currentVertex)
7 in newCliques ‘par ‘ (exploreCandidates remainingCandidates (currentVertex : currentExcluded)
8 ‘pseq‘ (newCliques ++ exploreCandidates remainingCandidates (currentVertex : currentExcluded)))

3.6 Lazy Data Structure + Strategy Implementation

3.6.1 Inspiration

Inspired by the idea introduced in the lecture where Parallelism = Lazy Data Structure + Strategy,

• ”Build a lazy data structure representing the computation”

• ”Apply a Strategy that traverses the computation”

3

Our goal is to encapsulate the algorithm within a lazy data structure, a design that inherently enables deferred
computation. By doing so, we can then apply a variety of strategies to this data structure without necessitating any
alteration to the algorithm’s core logic. This approach provides the flexibility to optimize performance and resource
management dynamically, according to the demands of the execution context, all the while maintaining the algorithm’s
integrity.

3.6.2 Computation Tree as the Lazy Data Structure

The choice of data structure is pivotal, and our analysis reveals that the most effective representation of each recur-
sive call is as a node within a computation tree. This structure mirrors the algorithm’s process, where each node
encapsulates a distinct state of computation.

To elucidate this concept, let us consider a specific example. Refer to Figure 1, where both the graph and its
corresponding computation tree are depicted you [2021]. The computation tree is constructed iteratively: each time
the BronKerbosch recursive function is called, we capture and store the current state—denoted by the variables
R,P,X—at that node. Subsequent iterations within the function that trigger further recursive calls result in the
creation of new branches in the tree. This process continues until a maximal clique is discovered, at which point the
tree culminates in a node representing this complete subgraph.

Figure 1: Illustration of Computation Tree

3.6.3 Haskell Data Structure for Computation Tree

Consequently, we have implemented the lazy data structures to represent the computation tree in Haskell, as demon-
strated in the following code snippet. The full implementation can be found in ParBK DataStructure.hs

1 type ComputationState = (Clique, [Vertex], [Vertex])
2 data ComputationTree = Branch ComputationState [ComputationTree] | Node Clique
3 getMaximalCliques :: Graph graph => graph −> ComputationTree

Notice the signature change in getMaximalCliques where it returns a ComputationTree instead of [Clique]. In
order to extract cliques from the computation tree. We define the following function in Util.hs.

1 extractClique :: ComputationTree −> [Clique]
2 extractClique (Branch xs) = concat (map extractClique xs)
3 extractClique (Node x) = [x]

3.6.4 Basic Parallel Strategy

Similar to the naive parallel strategy, we introduce a “spark” for each recursive call initiated. The full code can be
found in ParBK Strategy.hs.

1 strategy basic :: Strategy ComputationTree
2 strategy basic (Branch state xs) = fmap (Branch state) (parList strategy basic xs)
3 strategy basic (Node clique) = fmap Node (rdeepseq clique)

However, these are some notable problems for this strategy. Specifically:

• The creation of sparks is occurring at such a rapid rate that it leads to an overflow of the spark pool.

• The sparks being generated are too small, rendering them ineffective for the intended parallel performance gains.

To mitigate these challenges, we propose the following two strategies.

4

3.6.5 Chunked List Strategy

In this strategy, the idea is to reduce the number of sparks, by chunking the lists. We specify the chunkSize as a
parameter for this strategy. It determines how many elements of the list are grouped together in each chunk. In
principle, the choice of chunk size can significantly impact performance. Too small a size might not fully utilize the
benefits of parallelism, while too large a size might lead to uneven distribution of work across cores. The full code can
be found in ParBK Strategy.hs.

1 strategy chunked :: Int −> Strategy ComputationTree
2 strategy chunked chunkSize (Branch state xs) = fmap (Branch state) (parListChunk chunkSize (strategy chunked chunkSize) xs)
3 strategy chunked (Node clique) = fmap Node (rdeepseq clique)

3.6.6 Depth-limit Strategy

This strategy limits the parallelism to a certain depth in the tree, which applies different strategies based on the depth
parameter. If the depth is greater than zero, it applies the strategy depthLimited recursively to each child in the
list xs, but with depth-1. This means it will go one level deeper into the tree. parList is used here, which applies
the strategy in parallel to each element of the list xs. The parallel processing will continue until the specified depth
is reached. If the depth is zero or less, it applies the strategy to the children without parallelism. evalList is used
to sequentially evaluate each element of the list xs with the given strategy. This ensures that beyond the specified
depth, the computation proceeds in a non-parallel manner. The full code can be found in ParBK Strategy.hs.

1 strategy depthLimited :: Int −> Strategy ComputationTree
2 strategy depthLimited depth (Branch state xs)
3 | depth > 0 = fmap (Branch state) (parList (strategy depthLimited (depth − 1)) xs)
4 | otherwise = fmap (Branch state) (evalList (strategy depthLimited depth) xs)
5 strategy depthLimited (Node clique) = fmap Node (rdeepseq clique)

3.6.7 Something is Missing? Parallel Extraction!

Everything appears to be in place for the experiment to commence. We have already conducted numerous trials at
this stage, as detailed in Section 4.4. Unfortunately, the outcomes have not met our expectations. Upon thorough
analysis, to be discussed later, we identified that the bottleneck hindering parallelism is the sequential extraction
algorithm extractClique. This algorithm’s need to traverse an exponentially large computation tree is the primary
issue. To address this, we have developed modified parallel extraction methods specifically for each parallel strategies
introduced above, i.e., extractCliquePar, extractCliquePar Depth, extractCliquePar Chunk, which is presented
in Util.hs.

1 extractCliquePar :: ComputationTree −> [Clique]
2 extractCliquePar (Branch xs) = concat (parMap rdeepseq extractCliquePar xs)
3 extractCliquePar (Node x) = [x]
4

5 extractCliquePar Depth :: Int −> ComputationTree −> [Clique]
6 extractCliquePar Depth depth (Branch xs)
7 | depth > 0 = concat (parMap rdeepseq (extractCliquePar Depth (depth − 1)) xs)
8 | otherwise = concatMap (extractCliquePar Depth depth) xs
9 extractCliquePar Depth (Node x) = [x]

10

11 extractCliquePar Chunk :: Int −> ComputationTree −> [Clique]
12 extractCliquePar Chunk numChunks (Branch xs) =
13 concat $ parMap rdeepseq (concatMap (extractCliquePar Chunk numChunks)) (chunkTrees xs numChunks)
14 extractCliquePar Chunk (Node x) = [x]
15

16 chunkTrees :: [ComputationTree] −> Int −> [[ComputationTree]]
17 chunkTrees trees numChunks = chunksOf chunkSize trees
18 where chunkSize = max 1 (length trees ‘div‘ numChunks) −− Calculate chunk size, avoid division by zero

3.7 Testing

In order to test the correctness of the algorithm, we provide Test.hs, in which it defines the following function:

1 −− Main function to validate algorithm output
2 validateAlgorithm :: String −> String −> IO ()

The function takes two file paths as inputs: one for the input graph and another for the output cliques. It then
performs an evaluation based on these inputs, yielding an output of either “Valid” or “Invalid”. The process involves
two primary checks: firstly, it verifies whether all the cliques listed in the output file form fully connected subgraphs
as per the input graph. If this condition is met, it proceeds to assess whether these cliques are maximal. A clique is

5

considered maximal if it is not a subset of a larger fully connected subgraph in the input graph. If both conditions
are satisfied, the function outputs “Valid”; otherwise, it declares the result as “Invalid”.

4 Experiment Result

4.1 Test Graphs

We randomly generated 2 graphs as input:

1. Graph A: A graph of 200 vertices. Note that the probability of having at least one k-clique for a random graph
is close to 1 for small k and close to 0 for large k. Moreover, the dividing point for “small” and “large” is

2 log n

log 1/p

where p is the edge probability, n is the number of vertices. So almost all of the cliques in this graph will have
sizes smaller than 15. Therefore, the computation tree constructed is in some sense ”balanced” meaning that it
is shallow but the branches distributed evenly (See Figure 2).

2. Graph B: A graph of 50 vertices, whose subgraph set includesK25, i.e. at least a clique of 25 vertices. Therefore,
the computation tree constructed is in some sense ”imbalanced” meaning that it has a rather deep branch for
the big clique (See Figure 2).

4.1.1 Illustration of computation tree Structure for Two Graphs

(a) Graph A (b) Graph B

Figure 2: computation tree Structure for Two Graphs

4.2 Sequential Baseline

It costs the sequential algorithm 21.066 seconds to compute all maximal cliques on graph A, and 21.16 seconds on
graph B. This will be our baseline for all the following experiments.

4.3 Naive Parallelism

The detailed performance is listed in the table:

Cores
Sparks

Time (sec)
Total Converted GC’ed Fizzled

1 - - - - 21.066
2 8152240 11585 1432905 5798057 14.59
4 8093761 15275 1739294 5385841 8.023
8 8321491 42042 1936186 5672354 5.712

Table 1: Eventlog on graph A

Cores
Sparks

Time (sec)
Total Converted GC’ed Fizzled

1 - - - - 21.16
2 34215634 167 413291 460132 8.450
4 34897999 1222 1566001 3127131 5.829
8 37677284 8452 11122405 9161273 5.649

Table 2: Eventlog on graph B

We have observed a marked improvement in the running time compared to the sequential baseline algorithm.
Additionally, as shown in Table 1 and Table 2, there is a significant rise in the conversion ratio of sparks, with more

6

sparks being successfully converted out of the total generated. This improvement is likely attributed to the increased
number of cores allocated to the task, enhancing the conversion efficiency of sparks in the pool. Moreover, as shown
in Figure 3 for -N8, all assigned cores are utilized without too much idleness.

Figure 3: -N8 Naive Eventlog

4.4 First Stage (Sequential Extraction)

4.4.1 Basic Parallel Strategy

The execution times for the basic parallel strategy on Graph A are 26.552, 23.692, and 23.530 seconds when using the
parameters -N2, -N4, -N8, respectively. Interestingly, these times are similar to those of the sequential algorithm,
a finding that diverges from expectations. Typically, one would anticipate performance akin to the naive parallel
algorithm, where similar parameters generally yield comparable results. However, a closer examination of Figure 4
reveals that after an initial phase, the total computational activity approximates that of a single-core utilization. This
observation aligns with our previous discussion: the sequential extractClique method emerges as a limiting factor in
the algorithm’s efficiency. Consequently, the addition of more cores does not significantly enhance performance, due
to this bottleneck.

Figure 4: -N8 Basic Parallel Eventlog

4.4.2 Chunked List Strategy

Figure 5 demonstrates the correlation between the running time and the chunk size of sparks. Despite the process still
being constrained by the sequential extraction phase which makes it noisy, several interesting observations emerge by
analyzing the plot.

7

1. The impact of varying chunk sizes and the number of cores on running time depends on the specific structure of
the graph. For instance, in the case of Graph A, an optimal running time is achieved using a chunkSize of 128
combined with -N5. Conversely, for Graph B, the best performance is observed with a chunkSize of 1 and -N5.

2. As the number of cores increases, the performance curves for different chunk sizes tend to converge. This
phenomenon can be attributed to the increased parallelization, which in turn makes the sequential extraction
phase more prominent in determining the overall running time.

(a) Graph A (b) Graph B

Figure 5: Chunked List Algorithm Eventlog

4.4.3 Depth-limit Strategy

Notice that by limiting the depth of the tree, we get a significant reduction in the running time. Figure 6 illustrates
the relationship between running time and the parallelism depth limit. Still, despite the process still being constrained
by the sequential extraction phase which makes it noisy, several interesting observations emerge by analyzing the plot.

1. Similar to the chunk size strategy, the optimal strategies and core configurations are influenced by the structure
of the graph. For Graph A, peak performance is attained with a Depth Limit of 1 and the -N8 setting. In
contrast, Graph B achieves its best performance with a Depth Limit of 3 and -N5.

2. An interesting observation for Graph A is that a smaller Depth Limit proves to be more effective, whereas for
Graph B, a larger Depth Limit is preferable. This distinction can be understood by referring to the computation
tree illustrations in Section 4.1.1. Graph A’s computation tree is balanced, suggesting that an even distribution of
computation across branches is optimal, thus necessitating a smaller Depth Limit to avoid generating excessive
sparks for each branch. Conversely, Graph B’s tree is unbalanced with more computation concentrated in
specific branches, requiring a larger Depth Limit to generate sufficient sparks and fully leverage parallelism in
these heavier branches.

(a) Graph A (b) Graph B

Figure 6: Depth-limit Algorithm Eventlog

4.5 Second Stage (Parallel Extraction)

The plots now exhibit much more clear plots compared to those in the first stage, as highlighted in the previous
section. Furthermore, there’s a notable reduction in running time when contrasted with the first stage. Let’s proceed
to meticulously analyze the plots about the ’chunked list strategy’ and the ’depth-limit strategy’ in greater detail.

8

4.5.1 Basic Parallel Strategy

We conduct a comparative analysis between Figure 7 from the second stage and Figure 4 from the first stage. It is
evident that the ”straight line” representation, indicative of the use of only one ”equivalent” core in the latter part
of the process, particularly during the extraction phase, is significantly reduced. This observation substantiates our
prior hypothesis that it is the sequential extraction that causes this ”straight line” and demonstrates the efficacy of
parallelizing the extraction method.

Figure 7: -N8 Basic Parallel Eventlog

4.5.2 Chunked List Strategy

1. It is observed that as the number of cores increases, the running time monotonically decreases. However, the
rate of reduction in running time diminishes with the addition of more cores. This trend is attributed to the
increased overhead associated with generating a greater number of sparks. As an example, from Table 3’s first
and second rows, we can see that the conversion rate improves as the chunkSize increases from 1 to 128.

2. A noticeable decrease in running time is evident when the chunkSize is augmented from 1 to larger values. This
observation aligns with expectations, as excessively small sparks may be ineffective, and generating an excessive
number of sparks can lead to spark pool overflow.

3. Upon further increasing the chunkSize, a stabilization in running time is observed across all lines. This phe-
nomenon likely indicates that the maximum branching factor of the computation tree has been reached.

(a) Graph A (b) Graph B

Figure 8: Chunked List Algorithm Eventlog

4.5.3 Depth-limit Strategy

1. In alignment with the analysis presented in Section 4.4.3, modifying the Depth Limit exerts contrasting effects
on the two graphs, a particularly intriguing phenomenon. Specifically, for Graph A, a smaller Depth Limit

9

proves to be more effective. In contrast, for Graph B, an increase in the Depth Limit leads to a reduction in
running time. The underlying rationale mirrors that previously discussed, and can be further comprehended
by referencing the computation tree illustrations in Section 4.1.1. For Graph A, characterized by a balanced
computation tree, an even distribution of computation across branches is ideal, necessitating a smaller Depth
Limit to prevent the generation of superfluous sparks for each branch. In contrast, Graph B’s computation tree
is unbalanced, with a heavier concentration of computation in certain branches, hence requiring a larger Depth
Limit to produce enough sparks to effectively utilize parallelism in these more laden branches.

2. Analogous to the chunked list strategy, an increase in the number of cores leads to enhanced speed. However,
the rate of this increase diminishes owing to the associated overhead. As an example, from Table 3’s third and
fourth rows, we can see that the conversion rate improves a lot as the Depth Limit decreases from 5 to 1.

(a) Graph A (b) Graph B

Figure 9: Depth-limit Algorithm Eventlog

Cores: -N4, Graph: A
Sparks

Converted Ratio
Total Converted GC’ed Fizzled

Chunk Size: 1 12064844 1113217 8906017 1103620 9.23%
Chunk Size: 128 12064718 3461267 10461195 319810 28.69%
Depth Limit: 1 400 246 13 141 61.5%
Depth Limit: 5 7434200 717987 4918254 622945 9.66%

Table 3: Comparison for Spark Conversion

5 Future Directions

We list several future directions to further explore on this project based on current limitations.

1. Our computational framework, which extensively employs list concatenation in parallel strategies, exhibits in-
efficiencies. A prospective direction for future development involves refining these methodologies to enhance
efficiency.

2. A novel approach could be devised by amalgamating the depth limit restriction strategy with the chunked list
strategy, potentially yielding a more effective solution.

3. Another avenue for exploration is to program the generation of cliques in a deterministic order, guided by a set
of pre-established rules. This approach could potentially lead to more predictable and optimized outcomes.

4. The results presented in this report were obtained from simulations conducted on an M1 Mac, which may not
provide stable outcomes. For future endeavors, we aim to test our project on a low-balanced server, executing
multiple iterations and then averaging the results to acquire a more stable and reliable measurement of running
time.

6 Code

We have included the link to our GitHub repository in this report for the convenience of readers seeking future
reference. https://github.com/William-WANG2/4995-PFP

10

https://github.com/William-WANG2/4995-PFP

References

Maximal Clique Enumeration: Bron-Kerbosch Algorithm. https://www.youtube.com/watch?v=j_uQChgo72I, 2021.
[Online; accessed 01-Dec-2023].

Coenraad Bron and Joep Kerbosch. Algorithm 457: finding all cliques of an undirected graph, 1973. URL https:

//dl.acm.org/doi/10.1145/362342.362367.

Stephen A. Cook. The complexity of theorem-proving procedures, 1971. URL https://dl.acm.org/doi/10.1145/

800157.805047.

Richard M. Karp. Reducibility among combinatorial problems, 1972. URL https://web.archive.org/web/

20110629023717/http://www.cs.berkeley.edu/~luca/cs172/karp.pdf.

11

https://www.youtube.com/watch?v=j_uQChgo72I
https://dl.acm.org/doi/10.1145/362342.362367
https://dl.acm.org/doi/10.1145/362342.362367
https://dl.acm.org/doi/10.1145/800157.805047
https://dl.acm.org/doi/10.1145/800157.805047
https://web.archive.org/web/20110629023717/http://www.cs.berkeley.edu/~luca/cs172/karp.pdf
https://web.archive.org/web/20110629023717/http://www.cs.berkeley.edu/~luca/cs172/karp.pdf

	Overview
	Problem Formulation
	Definitions
	Problem Description
	Algorithm

	Haskell Implementation
	Deliverables
	Data Structures
	Graph Generation
	Sequential Implementation
	Naive Parallel Implementation
	Lazy Data Structure + Strategy Implementation
	Inspiration
	Computation Tree as the Lazy Data Structure
	Haskell Data Structure for Computation Tree
	Basic Parallel Strategy
	Chunked List Strategy
	Depth-limit Strategy
	Something is Missing? Parallel Extraction!

	Testing

	Experiment Result
	Test Graphs
	Illustration of computation tree Structure for Two Graphs

	Sequential Baseline
	Naive Parallelism
	First Stage (Sequential Extraction)
	Basic Parallel Strategy
	Chunked List Strategy
	Depth-limit Strategy

	Second Stage (Parallel Extraction)
	Basic Parallel Strategy
	Chunked List Strategy
	Depth-limit Strategy

	Future Directions
	Code

