
MatrixBFS
(or, more accurately, ParallelBFS)

Blake Appleby (aba2176)
Jonathan Hall (jah2328)
Ryan Wee (rw2800)

December 20 2023

Note: All source code can be found at https://github.com/ryanwee1001/
six-degrees-of-wikipedia.

Note: Our project title is MatrixBFS, because our original plan was to par-
allelize BFS using matrix multiplication. However, we no longer use matrix
multiplication. Hence, a more accurate name would be ParallelBFS.

1. Introduction

Our project aims to answer the question: Starting at some arbitrary wikipedia
page A, how many clicks would you need to reach some other arbitrary
wikipedia page B? (Assume of course that you can only click on links to
other wikipedia pages, and can’t just do a google search for page B.)1

It is quickly apparent that this is a shortest-path problem, on a directed
graph with constant-weight edges. Each wikipedia page is a node, and each
hyperlink on page A to page B is an edge from A to B. Since edge weights
are constant, we can solve this using BFS. Our goal is to parallelize this BFS.

1There is in fact a site dedicated solely to answering this question: https://www.

sixdegreesofwikipedia.com/. It appears that “Columbia University” is four clicks
away from “Haskell”.

1

MatrixBFS (or, more accurately, ParallelBFS)

2. Design and Implementation

2.1 Parallelizing Matrix Multiplication

Our original approach was to approach BFS as a matrix multiplication prob-
lem. In particular, multiplying the adjacency matrix by a vector representing
the current frontier yields the next frontier.2 Parallelizing matrix multipli-
cation thus allows us to parallelize BFS. In particular, each column of the
adjacency matrix can be allocated to a different core.

However, we found that this approach was relatively ineffective. In particular,
the graph of wikipedia pages is a sparse graph, i.e. |E| = O(|V |). Naive BFS
has a complexity ofO(|E|+|V |), which on a sparse graph is essentiallyO(|V |).
On the other hand, matrix multiplication is typically O(|V |3).3 Assuming
perfect parallelization on N cores, the runtime of parallel matrix BFS would

still be O(|V |3
N

). Since N on a typical computer is nowhere near |V |2, parallel
matrix BFS would be significantly slower than naive BFS.4

2.2 Parallelizing frontier exploration

We can think of BFS as an iterative algorithm, where in the nth iteration
we consider nodes that have a distance of n from the starting node. To get
from iteration n to iteration n+1, we need to find the direct neighbors of all
nodes in the nth frontier. This process of frontier exploration opens up two
opportunities for parallelization:

• Say there are k nodes in the nth frontier. Then we can get the neighbors
for each of these k nodes in parallel.

• The above step gives us k sets of nodes. However, some node N may
be the neighbor of two or more nodes in the nth frontier, i.e. it may
be a member of two or more of these sets. Hence, we need to get the
union of these k sets to form the next frontier. This multi-set union
can be done in parallel.

2See our proposal for more details.
3The fastest matrix multiplication algorithm is around O(|V |2.37).
4Our computers had around 8 cores. By comparison, there are more than 6e6 wikipedia
articles, so |V |2 would be something like 3.6e13.

2

MatrixBFS (or, more accurately, ParallelBFS)

In particular, we implement our recursive BFS function as follows. Note
that we stop our BFS after a depth of 6. This is because we could easily end
up choosing a start node and end node that are in two distinct connected
components of the graph. If the connected component that the start node
belongs to is especially large, searching through the entire component could
take a very long time.

-- Does union on a list of sets in parallel

parallelUnion :: Ord a => [Set.Set a] -> Par (Set.Set a)

parallelUnion [] = do

return Set.empty

parallelUnion [s] = do

return s

parallelUnion sets = do

let (half1, half2) = splitAt (length sets ‘div‘ 2) sets

mergedHalf1 <- parallelUnion half1

mergedHalf2 <- parallelUnion half2

return $ Set.union mergedHalf1 mergedHalf2

-- Recursive function for BFS that is executed in parallel.

parallelBFS :: DirectedGraph -> [Node] -> Set.Set Node ->

Int -> Node -> Par Int

parallelBFS _ _ _ 6 _ = do

return (-1)

parallelBFS graph frontier visited dist target = do

let neighbors = (parMap rpar (getNeighbors graph) frontier)

tmpFrontier <- parallelUnion neighbors

let nextFrontierSet = Set.difference tmpFrontier visited

if null nextFrontierSet then

return (-1)

else do

if Set.member target nextFrontierSet then

return (dist + 1)

else do

let newVisited = Set.union visited nextFrontierSet

let newFrontier = Set.toList nextFrontierSet

parallelBFS graph newFrontier newVisited (dist + 1)

target

3

MatrixBFS (or, more accurately, ParallelBFS)

2.3 Parallelizing query handling

Another opportunity for parallelization is handling multiple (start node, end
node) queries in parallel. We implement this as follows.

runQueries :: DirectedGraph -> [Query] -> Par [Int]

runQueries graph queries = do

parMapM (parallelBFSDriver graph) queries

3. Evaluation

3.1 Setup

The data needed to build this graph is freely available for download at https:
//en.wikipedia.org/wiki/Wikipedia:Database_download. In particular,
we extract two files from this dataset:

• wikigraph.nodes, containing a mapping from wikipedia page names to
integer IDs. This file is formatted as a JSON file. To reduce memory
usage, we only include mappings for pages used in our queries.

• wikigraph.edges, containing the edges between pages. Each node is rep-
resented using its integer ID instead of its string-based name. This file
is formatted as a binary file. The neighbors of each page are repre-
sented as a sequential array of int32 s, with a 0x0000 entry used as a
delimiter between pages.

We also create a third file, wikigraph.queries. This file contains a set of
queries formatted as csv lines. For instance, the query from “Columbia Uni-
versity” to “Haskell” is formatted as Columbia University,Haskell. During
our evaluation, we observed that many wikipedia pages are auto-generated
stubs with only one or two links. Hence, we only use ‘good pages’ that have
≥ 50 links as the start node or end node of our queries. Pages that do not
fulfil this criterion are still included in our graph; they just are not used as
the start node or end node of our queries.

Samples of all three files can be found in the data/ folder of the associated
tarball. Note that we heavily truncate our wikigraph.edges file, because the
original file is around 186MB. Hence, our code cannot be executed directly
on the sample data provided. Feel free to contact us for the actual data files
we used.

4

MatrixBFS (or, more accurately, ParallelBFS)

3.2 Methodology

Since the graph is very large, loading it into memory takes a non-significant
amount of time.5 Hence, we exclude the time taken for this I/O from the
timing results. We do so by using ‘seq’ to force the maps and lists representing
our graph to be fully evaluated before we commence our BFS.

orceEvaluationOfMap :: Map.Map k v -> ()

forceEvaluationOfMap m = Map.foldlWithKey

(_ k v -> k ‘seq‘ v ‘seq‘ ()) () m

forceEvaluationOfList :: [a] -> ()

forceEvaluationOfList l = foldl (_ x -> x ‘seq‘ ()) () l

main :: IO ()

main = do

edges <- readBinaryFileToGraph edgesFile

nodes <- readJSONFileToNodes nodesFile

queries <- readCSVFileToQueries queriesFile nodes

-- Force the full evaluation of edges / nodes / queries,

-- so we don’t include I/O in our timing results.

let resE = forceEvaluationOfMap edges

let resN = forceEvaluationOfMap nodes

let resQ = forceEvaluationOfList queries

putStrLn $ "Edges loaded: " ++ show (resE == ())

putStrLn $ "Nodes loaded: " ++ show (resN == ())

putStrLn $ "Queries loaded: " ++ show (resQ == ())

start <- getCPUTime

putStrLn $ "Results: " ++

(show $ runPar $ runQueries edges queries)

end <- getCPUTime

5This is also because the functions we use to parse the files are not very well-optimized.

5

MatrixBFS (or, more accurately, ParallelBFS)

Figure 1: Threadscope results

3.3 Results

We ran a set of five random queries with varying results (in particular, short-
est paths of 5, 6, 4, 5, 4). Figure 1 shows our threadscope.

The threadscope shows a good degree of parallelization. However, in terms
of actual runtime, we saw a slowdown when using more cores instead of a
speedup. In particular, the runtime (not including I/O) over the number of
cores was as follows:

Number of cores Runtime (microseconds)
1 65678413
2 73050117
3 79131775
4 78536043
5 88129798
6 92790432

Running on 6 cores with the ‘-s’ flag gave the following information on sparks:

SPARKS: 3896628 (

276198 converted,

1741526 overflowed,

0 dud,

1616020 GC’d,

205540 fizzled

)

6

MatrixBFS (or, more accurately, ParallelBFS)

4. Future Work

There are many parameters we could tune, for instance:

• The depth limit of our BFS (currently, we stop at 6)
• The types of queries used (do we use queries that have an answer of 1,
or queries that have an answer of 6?)

• The number of queries used
• The data structure used for processing edges

Another area of future work would be bidirectional BFS, i.e. doing a BFS
from both the start node and the end node to reduce the search space.

7

