
Life

Mark Mazel (mm4764)

December 2023

1 Introduction

This report aims to describe a parallel functional implementation for Conway’s
Game of Life. Conway’s Game of Life is a well known cellular automata. Con-
way’s Game of Life is the name of the algorithm which describes the state
transitions of a 2D (often toroidal) grid of bits which represent cells which are
either Alive or Dead. By the rules of Conway’s Game of Life, the next state of
each cell on the grid can be derived as a function of the prior state of the cell
in question as well as the prior state of every cell adjacent to it (eight total).
From Wikipedia:

1. Any live cell with fewer than two live neighbours dies, as if by underpop-
ulation.

2. Any live cell with two or three live neighbours lives on to the next gener-
ation.

3. Any live cell with more than three live neighbours dies, as if by overpop-
ulation.

4. Any dead cell with exactly three live neighbours becomes a live cell, as if
by reproduction

2 Rationale

As seen above, given a grid of cells, the next state of a cell can be found as a
function of 9 datapoints, the prior state of the given cell, and the prior state
of its 8 adjacent cells. Because of this, this problem is inherently quite parallel
and predisposes itself to a parallel solution. The problem also gives us a couple
input parameters to play with:

1. Starting State

• Although many configurations have been studied and there are shapes
which have been studied extensively and named in the Game of Life
community, for this Haskell approach, the input does not actually

1

https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life

matter from a performance standpoint at a high level. Aside from
any optimization or caching going on, calculating the N th step of an
X × Y grid will take the same amount of function calls regardless of
the original state of that grid.

2. Grid Dimension

• The size of the input grid can be selected such that the overall runtime
of the program is fast enough as to be reproducible without a large
wait but slow enough to allow any speedup during parallelization to
be easily noticeable.

3. Steps

• The amount of steps to simulate can be increased if needed to balance
the relative time of reading the input and dumping the output with
the time of ”actual” computation.

3 Algorithm

3.1 Overview

There exists an algorithm proposed in the 1980’s called Hashlife which utilizes
a hash-based memoization approach to more quickly be able to compute the
future state of the grid at the cost of larger memory usage. For this report,
I will focus on the straight-forward brute-force approach which calculates the
state of a cell at a given step as a recursive tree of calls to the states of that cell
and its adjacent ones.

3.2 Haskell Approach

For the Haskell approach to this, I adapted the approach discussed in this blog.
As an input, it takes in a file describing the initial grid state where each character
represents a cell with an × being a live cell and a · being a dead cell.

The parameters are listed as toplevel constants within the Main.hs file:

wIDTH : : Integer
wIDTH = 1000

hEIGHT : : Integer
hEIGHT = 1000

sTEP : : Integer
sTEP = 1

The grid is represented with the following data structure:

2

https://en.wikipedia.org/wiki/Hashlife
https://www.47deg.com/blog/game-of-life-haskell/

−− | A poin t in the g r i d
type Point = (Integer , Integer)
−− | The s t a t u s o f a c e l l
data Ce l l = Al ive | Dead deriving Eq
−− | Descr ip t i on o f a g r i d
type Grid = Point −> Ce l l

The initial grid is parsed from an input file specified via the command line
with the following code:

p a r s e I n i t i a l G r i d : : B. ByteStr ing −> Grid
p a r s e I n i t i a l G r i d s = go

where
l s = B. sp l i t ’\n ’ s
maxY = fromInteger wIDTH
maxX = fromInteger hEIGHT
go (fromInteger −> y , fromInteger −> x)

| x < 0 = Dead
| y < 0 = Dead
| x >= maxX = Dead
| y >= maxY = Dead
| y >= (B. length (l s ! ! x) − 1) = Dead
| B. index (l s ! ! x) y == ’ . ’ = Dead
| otherwise = Al ive

The next-step value of a cell is calculate as a function of the old state of the
cell and its eight adjacent cell states with the following code:

nextStep : : Ce l l −> [Ce l l] −> Ce l l
nextStep Al ive adj

| count Al ive adj < 2 = Dead −− underpopu la t ion
| count Al ive adj > 3 = Dead −− overpopu la t i on
| otherwise = Al ive −− Al ive and l e t A l i ve

nextStep Dead adj
| count Al ive adj == 3 = Al ive −− reproduc t ion
| otherwise = Dead −− noth ing happens

The adjacent cells of a given cell are discovered via a kernel approach with
the following code:

ad jacent s : : Point −> [Point]
ad jacent s (x , y)

= [(x+m, y+n) | m <− [−1 ,0 ,1] , n <− [−1 ,0 ,1] , (m, n) /= (0 , 0)]

The count function referenced in the listing of nextStep above contains the
following code:

count : : Eq a => a −> [a] −> Int
count x = length . f i l t e r (== x)

The final bit of the algorithm setup is the gameOfLife function:

3

gameOfLife : : Grid −> Integer −> Grid
gameOfLife i n i t i a l 0 p

= i n i t i a l p
gameOfLife i n i t i a l n p

= nextStep (gameOfLife i n i t i a l (n−1) p)
(map (gameOfLife i n i t i a l (n−1)) (ad jacent s p))

Note that this approach could be sped up by using memoization from Data.MemoTrie

and memo2 or memoFix but the approach above was used for this report as it
more obviously predisposed itself to the parallel approach.

3.3 Sequential Approach

For the sequential approach, the main function looks as follows:

main : : IO ()
main = do

[f i l e] <− getArgs
i n i t i a l G r i d <− p a r s e I n i t i a l G r i d <$> B. readFile f i l e
pr intSetup sTEP wIDTH hEIGHT
putStrLn ” f i n i s h e d par s ing ”
l et f = gameOfLife i n i t i a l G r i d

calcCellAndShow point = showCell ’ (f sTEP point)
calcRow row = map calcCellAndShow [(y , row) | y <− [0 . . (wIDTH−1)]]

mapM putStrLn [calcRow x | x <− [0 . . (hEIGHT−1)]]
putStrLn ”done”
pr intSetup sTEP wIDTH hEIGHT

3.4 Parallel Approach

For the parallel approach, an extremely similar approach can be used, swapping
from map to parMap from the Control.Monad:

calcRow row = runPar
(parMap calcCellAndShow [(y , row) | y <− [0 . . (wIDTH−1)]])

4 Input

4.1 Tuning Parameters

The selection of the parameters discussed above was manipulated until a rea-
sonably tuned selection was made. The input dimensions of 1000× 1000 gave a
runtime of 10 to 15 seconds. Some experimentation was done with the step of
the generation but it made for more complex parallelization as with each addi-
tional step, a whole new radius of adjacency is required for each cell calculation.

4

4.2 inputgen

As discussed above, the input itself does not considerably change the run-time
as long as it is run to the same step and has the same initial grid dimensions.
To test this, a variety of input files were generated using the following python
script and 10 of them are included with the file listings:

import random

width = 1000
he ight = 1000

out = []

for x in range (he ight) :
out . append (’ ’ . j o i n ([random . cho i c e ([’X ’ , ’ . ’]) for in range (width)]))

print (’ \n ’ . j o i n (out))

4.3 Actual Input

Because the input does not change the runtime considerably, an input which
allowed for easy visual verification of correctness of the output was selected.
This was a 20 × 10 grid which was repeated as many times as necessary across
the selected input dimensions. This grid contained two simple ”blinkers” which
oscillate on a two-step cycle, a slightly more complicated two-step ”blinker”, two
stationary ”blocks”, and a LWSS (light weight space ship) which was oriented
so as to leave the grid within a couple cycles. This input and the next three
steps of it’s life are shown below

5 Results

5.1 IO Time

By running with sTEP=0, I found that the input-output time is around 1-1.5
seconds as opposed to the 10-12 second runtime of the N1 algorithm for sTEP=1.
On my machine with an AMD Ryzen 5 3600X processor with 6 cores and 12
logical cores. Below are the -s results and threadscope results for various N

values.

5

5.2 N1

6

5.3 N2

7

5.4 N4

8

5.5 N8

9

5.6 N12

10

5.7 N16

11

5.8 Speedup

Below is a graph of the speedup as a percentage of ideal speedup using the
timings reported in the N_ sections above. The x axis is the number of cores
and the y access is the runtime relative to the N1 runtime.

6 Conclusion

From the results above we can see that speedup is achieved at lower core counts
but falls off with higher core counts. We can see from the threadscope results
that thread utilization is quite high but there is more and more gaps (possibly
due to GC) at the higher thread counts. This is likely due to the amount of
duplicated calls between the threads due to the adjacents call in the logic. This
could be made faster through better slicing of the input and memoization. The
largest drawback of the approach is the original data representation adapted
from the blog mentioned originally as well as the initial grid parsing which it
employs. It makes for large inefficiency and unnecessary random access over the
data. By employing a structure which could more easily be traversed and zipped
over without the unnecessary access the original algorithm could be made much
faster. Re-evaluating the data organization as well as the parseInitialGrid

could help to achieve this goal.

12

	Introduction
	Rationale
	Algorithm
	Overview
	Haskell Approach
	Sequential Approach
	Parallel Approach

	Input
	Tuning Parameters
	inputgen
	Actual Input

	Results
	IO Time
	N1
	N2
	N4
	N8
	N12
	N16
	Speedup

	Conclusion

