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Hitori Final Report
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Introduction to Hitori

Hitori is a single-player logic puzzle game that is NP-complete. The initial setup of the puzzle is a grid of numbers,
where the player has to shade in speci�c cells to satisfy three rules: (1) No row or column may contain the same
unshaded number more than once (2) shaded cells cannot lie adjacent to other shaded cells, although diagonals are
allowed, and (3) all unshaded cells in the solved puzzles must be orthogonal to one another (there can be no unshaded
"islands"). Here is an example of an unsolved puzzle and the solved solution1:

(a) Starting Board State (b) Solved Board State

Figure 1: Hitori Boards

Hitori Solver in Haskell

Most implementations of Hitori solvers use a breadth-�rst-search or depth-�rst-search approach. We take a slightly
di�erent angle and convert the Hitori instance to a solvable Boolean constraint problem (BCP). To do this, we must
add logic to con�rm that all three rules of Hitori are satis�ed in conjunction.

To implement rule (1), we must ensure that no row or column contains an unshaded number more than once. For
example, given a starting board, and a column or row vector, we could have X = {x1, x2, ..., xn} and we must have
a rule such that for every pair (xi, xj)i̸=j ∈ X,xi = xj ⇒ ¬xi,shaded ∨ ¬xi,shaded. We implement this in Haskell by
taking each column and row as a vector, identifying all pairs of elements, and for each pair, if the values are equal, we
add a rule that at least one must be shaded to the CNF formula.

Similarly, for rule (2), we must ensure that any adjacent cells are not both shaded. So, for every xi where xj is an
adjacent neighbor, we have xi,unshaded ∨ xj,unshaded. We implement this in Haskell in a similar way to rule (1).

Finally, rule (3) is a bit trickier to implement. We borrow an idea from converting graph connectedness to a Boolean
SAT problem.2. To begin, we know that at least one of the �rst two cells must be unshaded, due to rule (2). If the
�rst cell is shaded, then the second cell (which is adjacent) must be unshaded. From here, there are two approaches
to graph connectedness. We know that a graph is connected ⇔ there exists a path of length i from every node to
the starting unshaded node. However, given V vertices in a graph, this creates |V | ∗ i number of additional boolean

1Source: https://baileyspuzzles.com/how-to-play-hitori/
2Graph connectedness: https://cs.stackexchange.com/questions/159983/boolean-constraints-for-a-connected-component-of-a

-graph
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variables that the SAT solver would need to account for. For larger Hitori boards, this created complex SAT formulas
that took a long time to implement.

Instead, we take the alternate approach, where we check that the graph is not disjoint, where a graph G = (V,E) is
disjoint ⇔ given an arbitrary starting vertex v0 ∈ V , for every v ∈ V , we have the following in conjunction:

� xv0

� (¬xu ∨ xv) ∧ (xu ∨ ¬xv)∀(u, v) ∈ E

�

∨
v ̸=v0

¬xv

We can �nd the negation of this to return the formula that checks for disjointness, and only use |V | additional variables
in our �nal Boolean SAT. There was one caveat where if a vertex contains no valid edges, it is possible to set that
"connectedness" variable to an arbitrary True or False, even though it is clearly disjoint. We add additional logic to
ensure that each vertex contains at least one valid edge.

Boolean SAT Solvers

We found three types of Boolean SAT solvers in our research. We will brie�y describe how each one works.

Davis-Putnam-Logemann-Loveland (DPLL)

DPLL is the most basic SAT solving algorithm that we worked with. It assumes that the input formula is in Conjunctive
Normal Form, meaning formulas must be the ANDs of ORs. As a basic example:

(x1 ∨ ¬x2) ∧ (x3 ∨ x1 ∨ x2)

A sequential DPLL SAT solver works in three phases:

1. Choose a literal to assign and assign it a value

2. Simplify the formula with that assignment

3. Recursively check if the resulting formula is satis�able

If the recursive check for satis�ability succeeds, then the formula is satis�able. Otherwise, the algorithm goes back to
the previous guess and �ips the assignment. This is called backtracking. Every time the algorithm makes a variable
assignment, it can simplify the resulting formula in one of two ways: unit propagation and pure literal elimination.
Unit propagation is the idea that if a clause only has one unassigned variable, the entire formula is only satis�able
if the literal tied to that variable is true. So we can take this assignment and propagate it down the tree. In pure
literal elimination, the algorithm looks for variables with only one polarity in the entire formula. If a literal is pure, we
know that it's possible to assign it such that all clauses containing the pure literal are true, so we remove all clauses
containing pure literals.

Con�ict Driven Clause Learning (CDCL)

The CDCL algorithm is based on the DPLL algorithm, which takes a literal and assigns a truth value to propagate a
tree. However, it makes the observation that when con�icts are identi�ed, new information is learned. And so, when
new information is learned, we can apply a new clause to the original CNF formula to improve the e�ciency of other
branches. However, because locally learned clauses do not apply to the overall CNF formula with all branches, the
algorithm must take careful steps to ensure that clause learning is limited only to certain subtrees.
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Finally, when a con�ict is detected, the CDCL algorithm backtracks back to an earlier guess, not necessarily to
the prveious guess. Unlike DPLL, backtracking is done in a non-chronological way. This makes it more di�cult to
parallelize with a divide-and-conquer approach.

Lookahead

Lookahead algorithms are also based on DPLL. However, instead of picking a literal arbitrarily at every step, it will
try each variable by assigning a True or False value to it. It will then look at the resulting formula and measure how
much the assignment reduced the formula. So, at every step of the tree propagation, the algorithm will try to pick
the best literal to perform the split.

To measure reduction, we can use multiple techniques. One way is to count the number of clauses or free variables
remaining. However, some sources that we've read mention that the number of reduced clauses might be better. These
are clauses where some of the variables have been eliminated. We have implemented the reduced clause measure in
our Lookahead step.

Parallelizing Strategies

Divide and Conquer

A divide-and-conquer approach to parallelizing a SAT solver involves splitting the solver's search space. Our parallel
DPLL implementation �divides and conquers� by sparking the evaluation of the positive and negative branches in
parallel. One major problem with this approach is that each branch of computation is not guaranteed to be well-
balanced, which leads to less-than-ideal speedup for parallel DPLL. Still, parallelizing DPLL is a worthwhile task, and
we can still achieve some speedup.

Portfolio

Portfolio solving is another technique for parallelizing Boolean SAT solvers. To achieve this, sequential solvers with
di�erent algorithms run in parallel, working on solving the same problem. However, if we run the same solver against
the same problem, we would obviously be duplicating work for ourselves. One way to avoid this is to run di�ent
types of solvers. For example, a DPLL algorithm and a Lookahead solver can run together. Also, because CDCL
implementations have random seeds to determine start points, some portfolio strategies simply run multiple CDCL
solvers in parallel, but with di�erent starting seeds.

We don't take this approach due to the amount of work that gets duplicated by the strategy. Additionally, Haskell
does not have an easy way to return results once one is found. All solvers must fully evaluate before we can return a
result. Instead, we consider an alternative that combines divide-and-conquer and portfolio strategy. However, we do
use a similar approach in our next strategy.

Cube and Conquer

Cube and conquer combines both divide-and-conquer and portfolio solvers. Initially, divide and conquer is used to split
the original problem into multiple sub problems (called cubes). This can be done with DPLL, but we have implemented
it with Lookahead. Because we are not evaluating the entire formula, we can use the expensive lookahead step to
make sure that the cube subproblems are reduced as much as possible. Once these cubes are found, we can apply a
CDCL solver to each cube in parallel, similar to a portfolio approach.

However, unlike in the traditional portfolio method, we are not repeating as much work, since each SAT solver is
working on a slightly di�erent subproblem. But, we still run into the same issue where each solver must evaluate
completely before we can return a result. The solver needs to balance the workload of each cube to ensure each
subproblem is roughly equal di�culty.

3



COMS W4995 Parallel Functional Programming December 19, 2023

Results

Here are some of the results from our testing. In the following pictures, 0 threads indicates the sequential algorithm,
which we use as a baseline for speedup. The �le we used was randomly selected from a database of CNF DIMACs
�les of randomly generated 3-SAT instances with 100 variables, 418 clauses, and a backbone size of 90 3. From this
collection, we selected CBS_k3_n100_m411_b90_999.cnf. All tests were all conducted on a 2023 Apple MacBook
Pro running Apple's M2 Pro chip with 12 cores. For each con�guration, we took an average of 3 runs to determine
the runtime.

� Parallel Look-Ahead

For the parallel look-ahead algorithm implementation, we had the worst baseline runtime. However, we were
able to get some improvements from running parallel lookahead along with parallel evaluation of the implication
graph.

Here are the results from our best settings. We can see better e�ciency in spark conversion, which wasn't the
case with greater parallelization depth thresholds. A full table of our results is below, along with our threadscope
analysis.

(base) peteryao@Peters-MacBook-Pro Final Project \% time ./CNFtest +RTS -N11 -s

12,911,601,136 bytes allocated in the heap

107,002,904 bytes copied during GC

1,306,864 bytes maximum residency (44 sample(s))

157,416 bytes maximum slop

60 MiB total memory in use (0 MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause

Gen 0 388 colls, 388 par 0.147s 0.052s 0.0001s 0.0012s

Gen 1 44 colls, 43 par 0.041s 0.015s 0.0003s 0.0015s

Parallel GC work balance: 50.57\% (serial 0\%, perfect 100\%)

TASKS: 24 (1 bound, 23 peak workers (23 total), using -N11)

SPARKS: 32895 (30038 converted, 0 overflowed, 0 dud, 1434 GC'd, 1423 fizzled)

INIT time 0.000s ( 0.011s elapsed)

MUT time 5.115s ( 0.629s elapsed)

GC time 0.188s ( 0.067s elapsed)

EXIT time 0.006s ( 0.012s elapsed)

Total time 5.309s ( 0.719s elapsed)

Alloc rate 2,524,289,833 bytes per MUT second

Productivity 96.3\% of total user, 87.5\% of total elapsed

./CNFtest +RTS -N11 -s 5.31s user 0.26s system 754\% cpu 0.739 total

3Singer, Josh. CBS_k3_n100_m411_b90 https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
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(a) Runtime in seconds (b) Speedup factor

Figure 2: Parallel Look-Ahead Performance

Figure 3: Parallel Look-Ahead Threadscope Analysis
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� CDCL Cube-and-Conquer Our CDCL cube-and-conquer implementation su�ers from a poor lookahead algo-
rithm, and a relatively slow CDCL implementation. Although CDCL can outperform DPLL in many instances,
the only existing implementation that we could �nd had an average runtime of 2.119s on our example formula.
However, we noticed that just by breaking down the problem into cubes, CDCL was able to run very quickly,
leading to strong runtimes even when using just 1 core.

The best settings were generally used all cores, and the speedup was more apparent at greater look-ahead depths,
as the problem approached perfect parallelism. Here are our results, including threadscope analysis of our best
parameters.

(base) peteryao@Peters-MacBook-Pro Final Project \% time ./CNFtest +RTS -N11 -s

True

699,163,104 bytes allocated in the heap

6,336,216 bytes copied during GC

981,984 bytes maximum residency (4 sample(s))

135,672 bytes maximum slop

59 MiB total memory in use (0 MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause

Gen 0 24 colls, 24 par 0.009s 0.004s 0.0002s 0.0006s

Gen 1 4 colls, 3 par 0.006s 0.002s 0.0006s 0.0013s

Parallel GC work balance: 55.29\% (serial 0\%, perfect 100\%)

TASKS: 24 (1 bound, 23 peak workers (23 total), using -N11)

SPARKS: 696 (671 converted, 0 overflowed, 0 dud, 18 GC'd, 7 fizzled)

INIT time 0.000s ( 0.009s elapsed)

MUT time 0.512s ( 0.073s elapsed)

GC time 0.014s ( 0.006s elapsed)

EXIT time 0.011s ( 0.000s elapsed)

Total time 0.537s ( 0.088s elapsed)

Alloc rate 1,366,342,854 bytes per MUT second

Productivity 95.3\% of total user, 82.2\% of total elapsed

./CNFtest +RTS -N11 -s 0.54s user 0.04s system 116\% cpu 0.501 total
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(a) Runtime in seconds (b) Cube factor

Figure 4: Parallel Cube-and-Conquer Performance

Figure 5: Parallel Cube-and-Conquer Threadscope Analysis
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� Parallel DPLL The implementation we found for sequential DPLL was the fastest algorithm at solving our
selected problem. However, unlike the parallel lookahead, the only parallel step in this implementation is when
we explore the next layer of the implication graph. One key feature of our parallel DPLL approach is having
control over a search �threshold� � that is, a global search depth after which we switch from a parallel algorithm
to a sequential one. This is to minimize the overhead from parallelization when the clause set is very small.
Since our spark threshold is connected to the depth of the implication graph, at a certain point, there is no
additional change from increasing the threshold�everything always runs in parallel.

Although the data is not listed in this report, we did notice that the performance increased signi�cantly from
threshold = 6 to threshold = 7. In our tables below, we have threshold = 5 and threshold = 8 for spacing.
The threadscope results look very similar to the Lookahead parallelization, with lots of time spent on garbage
collection. Our results are listed below:

(base) peteryao@Peters-MacBook-Pro Final Project \% time ./CNFtest +RTS -N10 -s

5,079,773,968 bytes allocated in the heap

147,360,512 bytes copied during GC

3,724,848 bytes maximum residency (14 sample(s))

156,776 bytes maximum slop

61 MiB total memory in use (0 MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause

Gen 0 127 colls, 127 par 0.104s 0.031s 0.0002s 0.0010s

Gen 1 14 colls, 13 par 0.039s 0.007s 0.0005s 0.0010s

Parallel GC work balance: 69.33\% (serial 0\%, perfect 100\%)

TASKS: 23 (1 bound, 21 peak workers (22 total), using -N10)

SPARKS: 4610 (89 converted, 0 overflowed, 0 dud, 1986 GC'd, 2535 fizzled)

INIT time 0.000s ( 0.008s elapsed)

MUT time 1.252s ( 0.140s elapsed)

GC time 0.143s ( 0.039s elapsed)

EXIT time 0.131s ( 0.019s elapsed)

Total time 1.527s ( 0.206s elapsed)

Alloc rate 4,056,394,350 bytes per MUT second

Productivity 82.0\% of total user, 67.9\% of total elapsed

./CNFtest +RTS -N10 -s 1.53s user 0.08s system 733\% cpu 0.219 total
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(a) Runtime in seconds (b) Speedup factor

Figure 6: Parallel DPLL Performance

Figure 7: Parallel DPLL Threadscope Analysis
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Conclusions

� Lookahead vs Naive DPLL vs CDCL Before testing, we expected CDCL to generally dominate DPLL
on most problems. 4 However, this was not the case when we looked at existing implementations of CDCL
and DPLL in Haskell. One of the best DPLL algorithms we found was able to solver our test instance in
around 0.30s, while CDCL took around 2.1s. Lookahead performed the worst. When running lookahead logic
on larger, unsatis�able expressions, the expensive literal selection step added signi�cantly to our runtime, even
when parallelized.

Part of the reason for the poor performance could be due to poor data structures and optimization. We were
able to �nd several DPLL implementations, but only one CDCL implementation (not including MiniSAT, Mios,
etc.). And we found no implementations for lookahead, so we had to write that ourselves.

� Parallel DPLL Our best speedup from using parallel DPLL came from using a high depth parameter and lots
of cores. Under these conditions, there were a lot of sparks being created and a lot of cores potentially available
to handle them. As expected, though, the speedup was far from the ideal speedup of 2x per core because of the
load balancing problem inherent to the divide-and-conquer philosophy DPLL uses. With our best speedup (10
cores with threshold=50), 4610 sparks were created, of which 1986 were garbage collected. In other words, 1986
sparks weren't actually needed by the program. They likely represent the number of sparks created down one
branch before the algorithm reached a satis�able assignment on another branch.

� Parallel Lookahead We implemented pararllel lookahead in two steps. First, we parallelized the lookahead
step, where we analyzed each variable's e�ect on problem reduction. Then, we used a divide and conquer
strategy for the rest of the parallelization. We noticed the slowest performance between 3 to 5 threads. The
best performance was around used nearly all of the 12 threads available. I would be curious to see if adding
additional threads beyond 12 would improve or hurt the overall performance. Also, we decided to use spark
creation scaling that was closer to logarithmic scale. Interestingly, the limits did not seem to have much e�ect
on the overall performance, with the scaling and runtimes fairly consistent across testing.

� Cube-and-Conquer Here, we noticed the largest jump in performance when we ran our tests on our dataset. We
decided to run this on our CDCL implementation so that the improvements would be more obvious. Sequential
CDCL had an average performance of 2.119s in our test �le. However, just by breaking the problem down,
we were able to see massive increases in performance. Running cube-and-conquer on just one thread made
tremendous gains. However, for our test �le we did notice that as the problem broke down into smaller cubes,
the runtimes got worse.

As mentioned earlier, the more branching we do in the lookahead step, the more parallel work we can get from
the original problem. We noticed that as the depths started to increase, we could see more of the thread scaling
in e�ect. As the number of cubes increased, we had better performance as we added more cores to the problem.
For smaller number of cubes, the e�ect is more muted, with similar performances across all runs.

Theoretically, any SAT solver would be appropriate to use in a cube-and-conquer strategy, since the conquer
step just assigns a solver to each cube. It's possible that with more e�cient lookahead logic and a faster CDCL
implementation, we could see even better results.

� Back to Hitori Looking back at our original Hitori problem, for 20x20 boards (among the largest that we could
�nd), the CNF equations that we generate are not too di�cult to solve. Any of these algorithms work just �ne.
Although one thing we can mention is that CNF rules generated from (1) No row or column containing the same
unshaded number and (2) no adjacent shaded cells are always appended to the start of our CNF formula. These
are also the easiest to solve, and help to limit the search space. Here, the expense of looking at every literal in a
lookahead step might was not worth any potential bene�ts. CDCL was able to solve a 20x20 instance in 0.042s,
while Cube-and-Conquer required around 0.50s under the best parameters.

4https://cs.stackexchange.com/questions/3014/running-time-of-cdcl-compared-to-dpll
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Future Work

In future work on this project, we would want to consider clause sharing and its e�ect on our runtimes. When running
a strategy like cube-and-conquer, some work is repeated by each solver, as it tries to evaluate subproblems with mostly
the same variables. However, it is possible for the solvers to each work individually on their own problem, but then
reconvene occasionally and share results with other solvers.

With more time, we could also improve our look-ahead implementation to get better cubes and �nd them more
e�ciently. One alternative for larger problems is to only consider a selection of literals to evaluate for clause reduction.
Also, our look-ahead implementation was based DPLL, so we terminate look-ahead after a certain depth has been
reached. This can create a lot of variability in the complexity of the cube required for the SAT solver to evaluate.
One way to get around this is to purely run sequential CDCL for smaller problems, where cubing is not needed. And
for larger problems, reduce the original formula until a certain level of reduction is achieved in each cube.

Additionally, the CDCL implementation that we found was relatively slow for our selected problem. However, it did
perform faster on our Hitori formula. DPLL took 0.104s compared to 0.042 on an average of 3 runs. We could either
adapt our cube-and-conquer to an improved CDCL algorithm, or pair with a known fast solver like MiniSAT.

Code

All code is located in our GitHub repository: https://github.com/peterbyao/HitoriSolver/
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