
AlphaGambit: Parallelizing MiniMax for Chess

Anthony Zhou

December 21, 2023

1 INTRODUCTION
1.1 Our Work
In the past, chess was always inherently a two-player game. But what if you wanted to practice

alone? Unless you were simply studying theory, you had no way to play a game without a human

partner. This all changed recently, with the advent of computer-based chess engines, which can

intelligently pick moves to play a human. Beyond enabling the individual practice use case,

these algorithms also give us insights into designing artificial intelligence in general.

The way that these chess engines traditionally work is by representing the chess board as

a game state, and representing moves as transitions. The goal of these algorithms is to find an

optimal path (i.e., an optimal move) through future game states to secure victory. However, this

approach comes with a big problem, which is computational complexity. The search space scales

exponentially with the number of moves you look ahead to. If the algorithm becomes either too

slow or memory-intensive, then it is no longer useful as a real-time adversary. Thus, practical

algorithms for playing chess (the canonical one being Minimax) typically only look a few steps

ahead of the current state.

In this work, we are addressing this explosion of the search space by introducing several

optimizations for the Minimax algorithm in Haskell. In particular, our goals are:

1. Implement a sequential version of the Minimax algorithm

2. Implement a parallelized version of the Minimax algorithm

3. Implement alpha-beta pruning, a common technique for reducing the size of the search

space

4. Implement Jamboree, a hybrid technique that combines ideas from alpha-beta pruning

with parallelized minimax for even faster running time.

To test and use these algorithms, we also created a state graph (based on the rules of chess) with

nodes corresponding to game states and edges corresponding to moves. Finally, we implemented

a visualization function that represents board states using Unicode chess characters.

We found that each of our optimizations achieved runtime improvements over Minimax, but

also discovered some issues that, if solved, would unlock much greater performance increases.

In the following report, we will share:

1. How we designed and implemented our algorithm

2. Runtime and profiling results and analysis

3. Discussion of challenges and opportunities

4. A full listing of the source code.

1.2 History of Chess
Chess first emerged in India during the 6th century AD as a game called ”Chaturanga.” This

early version represented the various elements of a military force, including infantry, cavalry,

elephants, and chariots. The game eventually spread through Persia, the Arab world, and Europe,

where it evolved into its recognizable modern form in Southern Europe during the 15th century

(7).

Today, chess has transcended borders and cultures to become a renowned game of strategy

and intellectual prowess. The prominence of professional tournaments, notably the prestigious

World Chess Championship, serves as a testament to chess’s enduring global appeal. Chess

remains an ever-evolving pursuit: technological innovations like artificial intelligence continually

revolutionize the game, influencing strategies and gameplay (5).

1.3 Chess in Computing
Alan Turing first introduced the integration of chess with computing in the 1950s. Early computer

programs of the 1960s built on Turing’s proposals, executing rudimentary chess maneuvers.

The evolution of artificial intelligence (AI) in chess facilitated pivotal developments. Sophis-

ticated algorithms, notably alpha-beta pruning, surfaced during the 1970s and 1980s, elevating

the computational understanding of chess strategies. In the 1990s, IBM’s Deep Thought and

Deep Blue represented pivotal advancements in AI-driven chess computation (bri).

The 2000s ushered in a new era marked by the integration of machine learning methodologies

into chess programs. Notably, the infusion of deep learning techniques, exemplified by neural

networks like AlphaZero, revolutionized chess strategy and gameplay.

Renowned chess engines such as Stockfish, Komodo, and Houdini emerged, leveraging AI

techniques to navigate the intricate complexities of chess. Monumental competitions, such as the

historic Kasparov versus Deep Blue match, marked the convergence of computerized prowess

against human intellect(8).

The integration of AI in chess profoundly impacted human engagement with the game. Chess

programs became indispensable learning aids for players across skill levels. Furthermore, these

programs facilitated in-depth analysis of game plays, enabling advanced scrutiny of moves and

strategic maneuvers.

The pursuit of complete AI mastery in chess faces formidable challenges owing to the game’s

inherent complexity. Current exploration focuses on harnessing hybrid AI models to enhance

comprehension and navigation of the intricate chess landscape.

1.4 Motivation
1.4.1 Overview of the Minimax Algorithm
Operating on the premise of sequential decision-making, Minimax seeks to optimize a player’s

move while considering the potential responses of an adversary: maximizing gains and minimiz-

ing losses.

Minimax utilizes a tree-like structure to analyze potential moves and their consequences.

Each node in the tree represents a game state, branching out to potential future states based on

possible moves. Minimax assigns players the roles of maximizing and minimizing adversaries.

The maximizing player aims to maximize their advantage, while the minimizing player aims to

minimize this advantage. The algorithm recursively evaluates each node in the tree, calculating

a heuristic value that represents the potential outcome of the game from that state. Minimax

backtracks up the tree after evaluating nodes and selecting the move that leads to the most

favorable outcome based on the heuristics.

2/19

1.4.2 Challenges in Complexity
The primary challenge stems from the exponential growth in the number of nodes within the

game tree as the depth increases. This exponential expansion leads to an astronomical number of

potential game states, exponentially multiplying the computational resources required to explore

all possibilities.

The resource-intensive sequential Minimax algorithm encounters limitations in exploring

extensive game trees: as the tree’s depth increases, the algorithm’s capacity to conduct deep

searches becomes limited, impacting its ability to navigate exponentially growing decision spaces.

Traditional Minimax implementations are infeasible to exhaustively search the vast number of

possible moves and resultant game states.

1.4.3 Alpha-Beta Pruning
Alpha-beta pruning, a pivotal optimization technique withinMinimax, identifies and prunes trivial

branches of the game tree. By discarding branches that do not impact the final decision, alpha-

beta pruning significantly reduces the number of nodes to be evaluated without compromising

the quality of the selected move, allowing Minimax to explore deeper into the game tree. For

this section only, we used an implementation adapted from (6).

1.4.4 Advantages of Parallelism
By distributing tasks across multiple processors, parallel computing significantly enhances

computation speed. Thus, parallelism provides a compelling solution to the limitations posed by

sequential Minimax. Parallelism harnesses the power of multi-core architectures to mitigate the

time-intensive nature of Minimax’s exhaustive search.

1.4.5 Parallelism Leveraged through Haskell
Haskell’s declarative and concurrent programming capabilities provide intrinsic support for paral-

lelism (4), aligning seamlessly with the requirements of Minimax optimization. Haskell libraries

such as Control.Parallel and Control.Concurrent includes essential tools and functionalities that

empower developers to effectively implement parallelism within the Minimax algorithm.

1.4.6 Jamboree Algorithm
The Jamboree algorithm stands as a promising approach, particularly in the context of paralleliza-

tion within Minimax optimization. Developed as an enhancement to Minimax, Jamboree aims to

augment the algorithm’s efficiency by leveraging parallel processing capabilities. Jamboree’s

structure inherently embodies a high degree of task independence, enabling concurrent execution

of distinct branches of the game tree. This independence allows parallelization strategies to be

efficiently implemented without substantial dependencies among individual tasks. We implement

Jamboree following the pseudo-code given from chessprogramming’s page.(2)

Unlike traditional Minimax where branch termination directly affects the overall search

process, Jamboree’s design allows for independent termination of branches. This characteristic

facilitates more efficient parallelization by reducing the necessity for synchronization points,

enabling better exploitation of parallel resources. The algorithm’s design encourages simul-

taneous evaluation of multiple branches, harnessing parallel computing resources effectively.

This simultaneous evaluation of branches aids in reducing computational time, enabling deeper

exploration of the game tree within comparable time frames.

2 METHODS
To properly test our algorithms, we had to create some scaffolding around them. First, the

search algorithms require some graph to search over, which we set up using functions from the

Chessica library. They also require a heuristic function to judge how good intermediate game

3/19

states are (since they can’t reach the end of the game). Finally, we implemented a command-line

interface for testing, profiling, and interacting with the various algorithms.

2.1 Structure
2.1.1 Chessica Package Integration
The implementation incorporates the Haskell package Chessica, designed to facilitate the
creation and manipulation of chess board and game data types (3). It contains useful primitives

for constructing a board, moving pieces, and checking for conditions like check and checkmate.

2.1.2 Heuristic Function
Because search functions – due to computational constraints – cannot search until the end state

of a graph, they need to know if intermediate moves bring the player closer to a winning state.

The heuristic function plays a critical role in the evaluation process, assigning a numerical score

to individual board states. It achieves this by considering piece values and the control exerted by

pieces over the board.

2.1.3 Search Functions
Employing the heuristic function alongside an initial board state, the methodology involves the

construction and exploration of a tree representing potential moves and their subsequent board

states. These search functions navigate through the tree structure, evaluating and selecting the

most optimal move based on the heuristic score.

2.2 Parallelization
We used Control.Parallel.Strategies to parallelize the mapping of functions onto lists. When

map is called, it allows the user to determine an evaluation method. The minimaxPar function
harnesses parallelism within the Minimax algorithm, crucial for optimizing game decision-

making. Central to its implementation is the use of map, which, when applied to a list of game
states within max_ and min_ functions, generates a sequence of thunks. These thunks encapsulate
potential game states and remain unevaluated until explicitly needed for further computation.

The key to parallelism lies in the evaluation strategy employed by parList, coupled with the
rseq strategy. parList operates on a list of thunks, initiating parallel evaluation of computations
within the list. Simultaneously, rseq orchestrates the reduction of thunks’ results, ensuring they
are computed in a specified sequence and enforcing thunks to a state known as weak normal

form (WHNF).

Weak normal form denotes partial evaluation, where thunks are evaluated to their outermost

constructor or lambda abstraction, without full computation. This partial evaluation readiness is

crucial for efficient parallelism, as it sets the stage for controlled and predictable thunk evaluation.

By using rseq to force thunks into WHNF, the algorithm orchestrates a sequence for thunk

evaluation, effectively managing parallel execution.

2.2.1 Command Line Interface
The primary interface, defined in app/Main.hs and compiled to an executable, governs the
input-output processing and serves as an intermediary to interact with the developed system.

It facilitates the selection of search functions and specifies the desired depth for the search.

Additionally, ’Main’ orchestrates simulated chess games between distinct engines, aiding in the

assessment and comparison of different strategies.

2.2.2 Visual Representations
Visual representation of the chessboard is achieved through the derivation of the Show typeclass
for the Chessica board datatype, using Unicode characters for the chess pieces. Additionally,

4/19

conversion from Unicode to image-based representations is accomplished using the Python

Imaging Library (PIL), offering a visual rendition of the chessboard.

2.2.3 Testing and Performance Evaluation
To measure performance metrics and efficiency, the methodology incorporates Python and Bash

scripting. These scripts conduct timed evaluations and collect performance data to gauge the

efficacy of the implemented system.

2.3 Implementation
2.3.1 Chessica
The generateGame function creates a new game instance adhering to the standard chess rules.

It initializes the game board and sets up the initial positions of the pieces.

The allUpdates function retrieves all potential moves available in a given game state,

utilizing a specific rulebook. It evaluates and generates a list of all possible moves based on the

defined rules.

The nextStates function, operating on a current game state, identifies and produces all
feasible updates within the game. It generates a collection of potential subsequent game states

following the standard chess rules.

stack exec AlphaGambit-exe.exe is run with the following GHC options: -threaded -rtsopts

-with-rtsopts=-N -funfolding-use-threshold=16 -O2 -optc-O3

5/19

Listing 1. Interface Relevant Chessica Game Details

module Functions.States (generateGame, nextStates) where

import Chess
import Chess.Rulebook.Standard (standardRulebook)

generateGame :: Game
generateGame = standardRulebook.newGame

allUpdates :: Game -> Rulebook -> [Update]
allUpdates game rulebook =

let sameColor (Some (PlacedPiece _ piece)) = piece.color ==
↪→ game.activePlayer.color
potentialUpdates (Some (PlacedPiece position _)) = rulebook.updates

↪→ position game
in concatMap potentialUpdates $ filter sameColor $ pieces game.board

nextStates :: Game -> [Update]
nextStates game
| null updates = [Update game endTurn]
| otherwise = updates
where updates = allUpdates game standardRulebook

2.3.2 Heuristics

Listing 2. Heuristic 1: Piece Point Difference, Heuristic 2: Threat Score

{-# LANGUAGE GADTs #-}

module Functions.Scoring (heuristic) where
import Chess
import Chess.Rulebook.Standard.Threat

-- Heuristic 1
heuristic :: Game -> Int
heuristic game = values (piecesOf White game.board) (piecesOf Black game.board)

where
values p1 p2 = value p1 - value p2
value pieces_ = sum [pieceValue piece | piece <- pieces_]
pieceValue :: Some PlacedPiece -> Int
pieceValue (Some (PlacedPiece _ (Piece piece _))) = case piece of
Pawn -> 1
Knight -> 3
Bishop -> 3
Rook -> 5
Queen -> 9
King -> 100

foldl' _ z [] = z
foldl' f z (x:xs) = let z' = z `f` x

in seq z' $ foldl' f z' xs

-- Heuristic 2

6/19

heuristic :: Game -> Int
heuristic game = value (piecesOf White game.board) - value (piecesOf Black

↪→ game.board)
where
value pieces_ = foldl' (+) 0 [pieceValue piece | piece <- pieces_] +

↪→ threatScore pieces_
pieceValue :: Some PlacedPiece -> Int
pieceValue (Some (PlacedPiece _ (Piece piece _))) =

case piece of
Pawn -> 10
Knight -> 30
Bishop -> 30
Rook -> 50
Queen -> 90
King -> 1000

threatScore :: [Some PlacedPiece] -> Int
threatScore pieces_ = foldl' (+) 0 [length (threats p game.board) | (Some

↪→ p) <- pieces_]

2.3.3 Sequential MiniMax

Listing 3. Sequential MiniMax Algorithm

import Control.Parallel.Strategies
import Data.Function (on)
import Data.List (maximumBy, minimumBy)
import Functions.Scoring (heuristic)
import Functions.States (nextStates)

randomCommand :: Game -> Update
randomCommand game =

let states = nextStates game
in states !! (length states `div` 2)

findMinTuple :: [(Int, Update)] -> (Int, Update)
findMinTuple = minimumBy (compare `on` fst)

findMaxTuple :: [(Int, Update)] -> (Int, Update)
findMaxTuple = maximumBy (compare `on` fst)

minimax :: Game -> Int -> Player -> Update
minimax game depth player
| player.color == Chess.Color.White = snd $ findMaxTuple $ map (\update ->

↪→ (min_ (depth - 1) update.game, update)) (nextStates game)
| player.color == Chess.Color.Black = snd $ findMinTuple $ map (\update ->

↪→ (max_ (depth - 1) update.game, update)) (nextStates game)
where
max_ :: Int -> Game -> Int
max_ 0 game = heuristic game
max_ depth game = maximum (map (\update -> min_ (depth - 1) update.game)

↪→ (nextStates game))

min_ :: Int -> Game -> Int
min_ 0 game = heuristic game

7/19

min_ depth game = minimum (map (\update -> max_ (depth - 1) update.game)
↪→ (nextStates game))

2.3.4 Parallel MiniMax

Listing 4. Parallel MiniMax Algorithm

minimaxPar :: Game -> Int -> Player -> Update
minimaxPar game depth player
| player.color == Chess.Color.White = snd $ findMaxTuple $ map (\update ->

↪→ (min_ (depth - 1) update.game, update)) (nextStates game)
| otherwise = snd $ findMinTuple $ map (\update -> (max_ (depth - 1)

↪→ update.game, update)) (nextStates game)
where
max_ :: Int -> Game -> Int
max_ 0 game1 = heuristic game1
max_ d game2 = maximum (map (\update -> min_ (d - 1) update.game)

↪→ (nextStates game2) `using` parList rseq)

min_ :: Int -> Game -> Int
min_ 0 game1 = heuristic game1
min_ d game2 = minimum (map (\update -> max_ (d - 1) update.game)

↪→ (nextStates game2) `using` parList rseq)

2.3.5 Alpha-Beta Pruning

Listing 5. Alpha-Beta Algorithm

alphaBeta :: Game -> Int -> Player -> Update
alphaBeta game depth player
| player.color == Chess.Color.White = snd $ findMaxTuple $ map (\update ->

↪→ (minValue update.game (depth-1) (-2) 2, update)) (nextStates game)
| otherwise = snd $ findMinTuple $ map (\update -> (maxValue update.game

↪→ (depth-1) (-2) 2, update)) (nextStates game)
where
maxValue :: Game -> Int -> Int -> Int -> Int
maxValue g 0 _ _ = heuristic g
maxValue g d a b =

let states = reverse $ nextStates g

getMinimaxAndAlpha :: (Int, Int) -> Update -> (Int, Int)
getMinimaxAndAlpha (bestMinimaxVal, _) update =

let newMinimax = max bestMinimaxVal (minValue update.game (d - 1) a
↪→ b)

in (newMinimax, max a newMinimax)

(bestMinimax, _) = takeFirstWithOrLastElem (\(v, _) -> v >= b) $
↪→ scanl getMinimaxAndAlpha (-2, a) states

in bestMinimax
minValue :: Game -> Int -> Int -> Int -> Int
minValue _ 0 _ _ = heuristic game
minValue g d a b =

let states = reverse $ nextStates g

getMinimaxAndBeta :: (Int, Int) -> Update -> (Int, Int)
getMinimaxAndBeta (bestMinimaxVal, b) update =

8/19

let newMinimax = min bestMinimaxVal (maxValue update.game (d - 1) a
↪→ b)

in (newMinimax, min b newMinimax)

(bestMinimax, _) =
takeFirstWithOrLastElem (\(v, _) -> v <= a) $

scanl getMinimaxAndBeta (2, b) states
in bestMinimax

-- will take the first element satisfying the condition, or the last element
↪→ if none do (last wont be checked)

takeFirstWithOrLastElem :: (a -> Bool) -> [a] -> a
takeFirstWithOrLastElem cond [x] = x
takeFirstWithOrLastElem cond (x : xs) = if cond x then x else

↪→ takeFirstWithOrLastElem cond xs

2.3.6 Jamboree (Parallel Alpha-Beta Pruning)

Listing 6. Jamboree Algorithm

jamboreee :: Game -> Int -> Int -> Int -> Int
jamboreee game _ _ 0 = heuristic game
jamboreee game a b depth | firstVal >= b = firstVal

| otherwise = jamboree2 (max firstVal a) b firstVal
where
jamboree2 :: Int -> Int -> Int -> Int
jamboree2 alpha beta bb = maximum (map (\update-> result (-jamboreee

↪→ update.game (-alpha-1) (-alpha) (depth - 1))) possibleMoves `using`
↪→ parList rseq)

where
result :: Int -> Int
result res | res >= beta = res

| val >= beta = val
| otherwise = max (max val res) bb

where
val = maximum (map (\update->(-jamboreee update.game (-beta)

↪→ (-alpha) (depth - 1))) possibleMoves `using` parList rseq)

firstVal = -jamboreee (head possibleMoves).game (-a) (-b) (depth - 1)
possibleMoves = nextStates game

2.3.7 Main

Listing 7. Main

module Main (main) where

import Chess
import Chess.Rulebook.Standard (standardRulebook)
import Lib (generateGame, minimax, jamboree, alphaBeta, minimaxPar,

↪→ randomCommand)
import System.Environment (getArgs, getProgName)
import System.Exit (die)
import System.IO (hSetBuffering, stdout, BufferMode (LineBuffering))

main :: IO ()

9/19

main = do
args <- getArgs
hSetBuffering stdout LineBuffering
case args of
["sequential", d] -> do

let game = generateGame
let minimaxUpdate = minimax game (read d :: Int) game.activePlayer
putStrLn "Minimax update:"
print minimaxUpdate.command

["parallel", d] -> do
let game = generateGame
let minimaxUpdate = minimaxPar game (read d :: Int) game.activePlayer
putStrLn "Minimax update:"
print minimaxUpdate.command

["jamboree", d] -> do
let game = generateGame
let minimaxUpdate = jamboree game (read d :: Int) game.activePlayer
putStrLn "Jamboree update:"
print minimaxUpdate.command

["alpha_beta", d] -> do
let game = generateGame
let minimaxUpdate = alphaBeta game (read d :: Int) game.activePlayer
putStrLn "Alpha-Beta update:"
print minimaxUpdate.command

["play"] -> do
let game = generateGame
playGame game

_ -> do
name <- getProgName
die $ "Usage: " ++ name ++ " <sequential|parallel> <depth=1,2,3,4,5> OR

↪→ " ++ name ++ " play"

playGame :: Game -> IO ()
playGame g = case standardRulebook.status g of
Win player -> putStrLn $ "Win for " ++ show player.color
Draw -> putStrLn "Draw"
Turn (Player White) -> do

let (Update game command) = minimaxPar g 4 g.activePlayer
print game.board
playGame game

Turn (Player Black) -> do
let (Update game command) = minimaxPar g 4 g.activePlayer
print game.board
playGame game

2.3.8 Visual Representation

Listing 8. Visual Printout

import Chess
import Functions.Scoring (heuristic)
import Functions.Search (jamboree, minimax, minimaxPar, randomCommand,

↪→ alphaBeta)
import Functions.States (generateGame, nextStates)

instance Show Board where

10/19

show board = unlines [showRow r | r <- [0 .. 7]]
where
showRow r = unwords [showPosition (boundedPosition r c) | c <- [0 .. 7]]
showPosition pos = maybe "." showPiece (Chess.lookup pos board)
showPiece (Some (PlacedPiece _ piece)) = unicodeChess piece

unicodeChess :: Piece t -> String
unicodeChess (Piece piece color) = case (piece, color) of
(King, White) -> "U+2654"
(Queen, White) -> "U+2655"
(Rook, White) -> "U+2656"
(Bishop, White) -> "U+2657"
(Knight, White) -> "U+2658"
(Pawn, White) -> "U+2659"
(King, Black) -> "U+265A"
(Queen, Black) -> "U+265B"
(Rook, Black) -> "U+265C"
(Bishop, Black) -> "U+265D"
(Knight, Black) -> "U+265E"
(Pawn, Black) -> "U+265F"

Listing 9. Unicode to Image

from PIL import Image, ImageDraw

#
↪→ https://commons.wikimedia.org/wiki/Category:PNG_chess_pieces/Standard_transparent

pieces_mapping = {
'U+2654': './pieces/white_king.png',
'U+2655': './pieces/white_queen.png',
'U+2656': './pieces/white_rook.png',
'U+2657': './pieces/white_bishop.png',
'U+2658': './pieces/white_knight.png',
'U+2659': './pieces/white_pawn.png',
'U+265A': './pieces/black_king.png',
'U+265B': './pieces/black_queen.png',
'U+265C': './pieces/black_rook.png',
'U+265D': './pieces/black_bishop.png',
'U+265E': './pieces/black_knight.png',
'U+265F': './pieces/black_pawn.png',
'.': './pieces/empty_square.png'

}

def chessboard_to_image(position):
square_size = 64
board_size = 8 * square_size

chessboard = Image.new('RGB', (board_size, board_size), color='white')
draw = ImageDraw.Draw(chessboard)

for i in range(8):
for j in range(8):

if (i + j) % 2 == 0:
draw.rectangle([(i * square_size, j * square_size), ((i + 1) *

11/19

↪→ square_size, (j + 1) * square_size)], fill='green')

for i, row in enumerate(position.split('\n')):
for j, piece in enumerate(row.split()):

piece_image = Image.open(pieces_mapping[piece])
chessboard.paste(piece_image, (j * square_size, i * square_size),

↪→ mask=piece_image.split()[3] if piece_image.mode == 'RGBA'
↪→ else None)

return chessboard

sample_position = '''
U+2656 U+2658 U+2657 U+2655 U+2654 U+2657 U+2658 U+2656
U+2659 U+2659 U+2659 U+2659 . U+2659 U+2659 U+2659
. . . . U+2659 . . .
.
.
.��������

U+265C U+265E U+265D U+265B U+265A U+265D U+265E U+265C
'''

chessboard_image = chessboard_to_image(sample_position)
chessboard_image.save('chessboard_image_with_filled_grid.jpg')

with open('../output.txt', 'r', encoding='utf-8') as file:
contents = file.read()

boards = contents.split('\n\n')

for i, board in enumerate(boards):
chessboard_image = chessboard_to_image(board)
chessboard_image.save(f'./board_states/chessboard_{i + 1}.png')
if i > 100:

break

2.3.9 Testing and Performance Evaluation

Listing 10. Timing

#!/bin/bash

Define the Haskell executable name
executable="AlphaGambit-exe"

Function to run the executable with given parameters and append to the
↪→ appropriate CSV file

run_and_record() {
mode=$1
depth=$2
csv_file=$3

Using 'time' to measure the execution time
start_time=$(gdate +%s.%N)

12/19

stack exec --silent $executable $mode $depth
end_time=$(gdate +%s.%N)

Calculate duration
duration=$(echo "$end_time - $start_time" | bc)

Append to the respective CSV file
echo "$mode,$depth,$duration" >> $csv_file

}

Headers for CSV files

modes=("parallel sequential alpha_beta jamboree")

for mode in $modes; do
echo "mode,depth,duration" > new_runtimes/${mode}.csv
done

Run the executable once to warm it up
stack exec --silent $executable parallel 1

Loop through all combinations of mode and depth
for mode in $modes; do

for depth in {1..5}; do
run_and_record $mode $depth new_runtimes/${mode}.csv

done
done

Figure 1. An example image of a Chess Board State converted to an Image in Color

13/19

3 RESULTS

3.1 Performance Improvements

Table 1. Performance Comparison (Seconds)

Depth
Version

Sequential Parallel Alpha-Beta Jamboree

1 0.46073360 0.44102400 0.43213000 0.43370427

2 0.45661260 0.45061940 0.43771255 0.43347273

3 0.62103900 0.49432600 0.49344282 0.45055836

4 4.20282800 1.21160080 0.91326627 0.52318300

5 91.26088060 18.10007400 1.91300927 1.25586491

Figure 2. Heuristic 1 Performance for Sequential and Parallel MiniMax

14/19

Figure 3. Heuristic 2 Performance for All Four Algorithms

Parallel minimax performs exponentially better than sequential minimax as seen in the log

scale graph comparisons in Figures 1 and 2. However, we see that the more advanced algorithms

like Alpha-Beta and Jamboree are still exponentially faster than Parallel Minimax.

15/19

3.2 Parallelism Analysis

Below is the timing values for parallel functions with the indicated number of cores running at

depth 4.

Table 2. Core Performance Comparison (Seconds)

Cores
Version

Parallel Minimax

1 3.578

8 1.181

16 0.847

In an ideal parallelization scenario, each 4 cores should offer a 4 times speedup compared

to 1 core. In our case, we see the increase in cores results in a 300% speedup. However as the

number of cores increases the less efficient the process becomes, with two times the number of

cores resulting in a 35% speedup.

3.3 Threadscope analysis

Threadscope data for parallel minimax:

Figure 4. ThreadScope Data for Parallel Minimax with depth 5

Threadscope data for Jamboree:

16/19

Figure 5. ThreadScope Data for Jamboree with depth 5

We see that the work is split well between the 4 cores in this example, meaning that parallelism

is speeding up our calculations. The Garbage Collection time is low, however, there are a lot of

sparks being GC’d or fizzled because they are unused. This indicates the program still be made

more efficient through parallelization.

3.4 Simulated Game Run

Figure 6. An example image of a Chess Board State Outputted from Haskell

17/19

4 CONCLUSION
4.1 Challenges Faced
4.1.1 Integration Issues with Chessica
Chessica’s lack of comprehensive documentation means there is a steep learning curve when

first adopting the package. Its lack of functions for inputting and outputting game states, also

makes it harder to debug and test. However, Chessica was still the most complete package we

could find encoding chess rules in Haskell, and it worked well outside of these limitations.

4.1.2 Inefficient Parallelism
Using ParList directly on Minimax/Jamboree would create a lot of sparks that were GC’d or

fizzled, meaning they didn’t contribute to the program speed up. We believe the issue to be that

the processes towards the nodes of the trees run too fast, so the values are already computed in

the main thread and not used, therefore fizzling or being discarded. We attempted to address this

issue using parListChunk, which would split the array into equal sections and call parList. Since

most of the computation is getting the array elements themselves, this theoretically would result

in an improvement due to more sparks being evaluated. However, we found that this change

made no difference. Additionally, we tried using rdeepseq instead of rseq to forcibly evaluate

values, but that did not show any improvements either.

4.1.3 Complexities in Parallelizing Jamboree
The parallelization of Jamboree, a critical component of the system, proved to be tough because

it requires early stopping upon a certain branch condition. Because this was hard to achieve in

the parallel setting, we developed a workaround where all parallel operations had to conclude

before proceeding, consequently impacting computational speed. This results in the parallelized

version being similar or worse in time compared to normal Alpha-Beta.

4.2 Potential Improvements
4.2.1 Optimizations of Functions
Further code refinement could enhance the performance of all search functions within the

implemented system: streamlining and augmenting the efficiency of the search algorithms would

increase the speed and accuracy of decision-making processes.

In terms of parallelism, this would include ensuring lazy evaluation so that sparks can be

handed off to other cores without being destroyed/unused.

4.2.2 Enhanced Parallelism Deconstruction for Jamboree
Deconstruction and reconfiguring the parallelism structure could also enhance performance:

fine-tuning the parallelization strategy could improve the efficiency of Jamboree, potentially

optimizing computational speed.

4.2.3 Augmentation of Heuristic Functionality
Broadening the heuristic function to consider aspects like piece mobility and safety would lead

to a more comprehensive evaluation of board states, refining the decision-making process.

4.2.4 Exploration of Complex Algorithms - Monte Carlo Tree Search
The integration and exploration of more intricate algorithms, such as the Monte Carlo Tree

Search (MCTS), present a compelling avenue for system enhancement. The adoption of MCTS,

renowned for its ability to navigate complex decision spaces, holds the potential to broaden the

system’s repertoire and augment its capability to analyze and derive optimal moves in intricate

chess scenarios.

18/19

REFERENCES
[bri] ”chess - game”. Encyclopaedia Britannica.

[2] chessprograming (2021). Jamboree.

[3] Haskell (2023a). ”chessica - haskell chess library”. Haskell Hackage.

[4] Haskell (2023b). ”parallelism and concurrency in haskell”. Haskell Wiki.

[5] Hooper, David, K. W. (1992). The oxford companion to chess. Oxford University Press.

[6] Mozolewski, M. (2020). Minmax, alpha beta pruning; a*, dfs bfs in haskell.

[7] Murray, H. J. R. (1913). A history of chess. Oxford University Press.

[8] Newborn, M. (1997). ”kasparov versus deep blue: Computer chess comes of age.”.

19/19

