
N-Parzzle Solver

Ahmad Rawwagah (afr2151), Kimberly Tsao (kt2803),
Ruth Lee (rsl2159)

December 20, 2023

1 Introduction

The N-parzzle game is a rendition of the more popularly recognized, 8-Puzzle.
This game starts with an initial board state with N movable tiles and one
empty space. There is one tile for each number in the set 1, 2, 3, . . . N. The
aim of this game is to get from any initial board state (as shown in Figure 1)
to the configuration with all tiles in ascending order as shown in Figure 2. The
example below shows a 3x3 board for an 8-Puzzle, but our project also runs on
4x4 boards (15-Puzzle), which has a much longer run time because the search
space increases exponentially.

Figure 1: Initial State Figure 2: Goal State

2 Implementation

The N-puzzle can be solved using different search algorithms, such as Breadth-
First Search (BFS), Depth-First Search (DFS), and A* search algorithms. To
later create a version modified to run in parallel, we first implemented a sequen-
tial solver in Python using A* search.

1

2.1 A* Search with Modification

The A* algorithm is a popular search algorithm because of its use of heuristics
to find the shortest path to a goal state. At each generated next neighbor state,
it considers the number of moves it took to reach the current state from the start
state and computes an estimation (using a specified heuristic) to determine the
number of moves (the distance) to the goal state.

F (x) = G(x) + H(x)
F (x) =Total Cost to Current Board
G(x) = # Moves from Start to Current Board
H(x) =Manhattan distance from Current to Goal Board

For each tile of a current board, we calculate the Manhattan distance to goal
position and then sum the Manhattan distance for every tile. The Manhattan
distance is the sum of all vertical and horizontal moves until a tile reaches their
goal position.

Although this ensures that we would reach the shortest path, our goal for
this sequential algorithm is to quickly find any solution. Therefore, our im-
plementation of the A* algorithm was modified to only consider the estimated
number of moves to the goal state (H(x)) and prioritize those closer to goal.
This means that we first explore boards that are estimated to reach the goal in
the least number of moves. This was done using a priority queue.

2.2 Data Structures

We created a Puzzle object so that we could easily store and access information
regarding each state of a puzzle such as the vector representation of the board,
distance heuristic, number of moves, position of the empty space, and previous
puzzle state.

We also created a Direction, which consists of UP, DOWN, LEFT, and
RIGHT so that we could apply the move to the board.

Figure 3: Data structure implementation of Direction and Puzzle

2

2.3 Parallel Implementation to Generate Neighbor States

Our approach to implementing a parallel generation of the next board states
is shown in the code below. Rather than using mapMaybe, we took a parallel
approach that works with maybe types. We created a parMapMaybe function
rather than just parMap so that we could work with cases where applying the
move function on a direction like UP to the board would return nothing. This
would be the case if the empty space was on the top row, making the empty
space unable to perform UP.

We used ’parList rseq’ to perform the move function in parallel where rseq
helps prevent Haskell’s lazy evaluation by making sure each direction has started
being evaluated to head normal form before a list is returned.

Figure 4: Parallel implementation to generate neighbor states.

2.4 Parallel Implementation to Calculate Manhattan Dis-
tances

Another strategy we attempted to make our A* search parallel was to make our
total heuristic calculations more efficient since the function runs with O(N2)
time complexity by calculating Manhattan distance for every tile in the board.
As the dimension of the board size increases, the search space increases expo-
nentially. Our heuristic that is calculated for every Puzzle generated in the sum
of Manhattan distances for everytile. Although a simple calculation, when the
number of tiles increases exponentially, we could potentially see a benefit to
adding parallelization. In Figure 5, we use ’parMap rpar’ to map the ’manhat-
tan’ function, which calculates the distance of a tile’s current position to its goal
position.

Figure 5: Parallel implementation to calculate heuristic of each Puzzle state.

3

2.5 Parallel Implementation to Solve Multiple Boards

We then modified our algorithm to run multiple boards at once in parallel.
Specifically we created files with 10,000 3x3 boards and a file with 50 4x4 boards.
As shown in Figure 6, our implementation was relatively simple by using func-
tions ’parMap rpar’ where rpar sparks for evaluation of the solve function and
parMap maps to be evaluated all of the games in parallel.

Figure 6: Parallel implementation to run multiple boards.

2.6 Parallel Implementation to Explore Multiple Priority
Queue States

During our presentation, a new technique to parallelize the A* star algorithm
was discussed. Even if a state is at the top of the priority queue, it isn’t neces-
sarily the best path so far. Instead of exploring one new frontier state at a time,
we could explore the k-best frontier states at once by using concurrent threads.

Haskell provides support for concurrency through the Control.Concurrent
library. This concurrency is lightweight and should therefore have low overhead.
Information can be shared between threads via MVars, a kind of synchronised
mutable variable. In this way, an MVar that tracks complete searches can be
maintained. When a thread reaches a solution, it adds it to the shared data
structure. The main thread has been blocked on readMVar so once this solution
is found, it’ll kill all other threads and return the solution.

4

Algorithm 1 Parallel Priority Queues

if PQ.sizepsq < k then
run A* algorithm on psq

else
complete← newEmptyMV ar
Fork for each queue in psq and run A* algorithm
tryPutMVar complete solution
ret← readMV ar
Kill threads
Return ret

end if

3 Results + Evaluation

Table 1: Runtime comparison of different Parallel Techniques vs. Sequential

Threads Sequential ParNeighbors ParBoard ParPQ
1 35.59 35.59 35.59 35.59
2 35.59 49.24 31.35 85.31
6 35.59 49.92 38.28 6.24

10 35.59 50.45 39.55 6.3
14 35.59 51.72 39.69 6.73

3.1 Parallel Neighbor States

As Shown in Figure 7, The runtime of the solver only increases as the number
of threads used increases. This is true for both 4x4 and 3x3 boards. Looking at
the ThreadScope output in Figure 8, We can see that there is no real parallelism
present as the activity does not increase across more than one thread.

5

Figure 7: Parallel Neighbors Runtime for 3x3 Boards

Figure 8: Parallel Neighbor Threadscope Output for 3x3 Boards using 6 Threads

3.2 Parallel Manhattan Distance

As Shown in Figure 9, The runtime of the solver only increases as the number of
threads used increases. This is true for both 4x4 and 3x3 boards. Looking at the
ThreadScope output in Figure 10, We can see that there is no real parallelism
present as the activity does not increase across more than one thread.

6

Figure 9: Parallel Distance Runtime for 3x3 Boards

Figure 10: Parallel Distance Threadscope Output for 3x3 Boards using 6
Threads

3.3 Parallel Boards

While this approach is expectedly faster than the sequential solution, it’s not
necessarily parallelizing the actual A* search process. Of course if you use more
threads to simultaneously solve the same number of boards, it’ll complete faster
than going through each one at a time.

7

As seen in Figure 11, the runtime of the solver decreases as more threads are
used up to 20 threads, and closely follows the ideal runtime curve. The runtime
then increases after more than 20 threads are used.

Figure 11: Parallel implementation to run multiple boards.

Figure 12: Multiple Boards Threadscope for running 50 4x4 boards

8

Figure 13: Multiple Boards Threadscope for running 10,000 3x3 boards

3.4 Parallel Multiple Priority Queue States

This technique works well as we can see a significant speedup of 5.83x for k = 5
priority queues. Interestingly, in the graph below you can see that the improve-
ment levels off at N = 5 and we found that this was related to factors of the k
value we set since its determining when and how many times we thread.

For figure 14, we believe that the reason it drops at 5 threads is because we
explore 5 priority queue states at once and so it would not need more than 5
threads to run.

Due to the time constraints of this project, we only had time to run on 10
4x4 boards rather than 50.

9

Figure 14: Multiple Priority Queue States Run for 10000 3x3 with N = 5

Figure 15: Multiple Priority Queue States Run for 10 4x4 with N = 5

10

Figure 16: Multiple Priority Queue States Threadscope for 10000 3x3 with N
= 5

Figure 17: Multiple Priority Queue States Threadscope for 10 4x4 with N = 5

4 Future Work

The biggest issue with our implementation is likely memory usage that prevented
us from testing on larger puzzles such as 24-Puzzle or 35-Puzzle. In the future,
we’d like to improve our code by using a hash map to keep track of visited
states so we don’t repeat searches. However, this may introduce a problem
with concurrency because we’d have to ensure we aren’t overwriting the hash

11

map from different threads. We’d also like to implement various strategies of
pruning.

Listing 1: NParzzle Main.hs

module Main (main) where
import Data .Maybe (mapMaybe, fromMaybe)
import Data . Vector (Vector , (!) , (/ /))
import Data . List . S p l i t (sp l i tOn)
import quali f ied Data . PQueue . Prio . Min as PQ
import quali f ied Data . Vector as V
import System . Environment (getArgs)
import System . Exit (exitSuccess)
import Control .Monad (forM , void)
import Control . P a r a l l e l . S t r a t e g i e s
−− import Contro l . P a r a l l e l (par , pseq)
import Control . DeepSeq (NFData , rn f)
import Control . Concurrent (newEmptyMVar , forkIO , tryPutMVar , readMVar , k i l lThread)

type Board = Vector Int
data Dir e c t i on = UP | DOWN | LEFT | RIGHT deriving Eq
instance NFData Di r e c t i on where

rn f d i r = d i r ‘ seq ‘ ()

data Puzzle = Puzzle
{ board : : Board
, d i s t : : Int
, dim : : Int
, zero : : Int
, moves : : Int
, p r ev ious : : Maybe Puzzle
} deriving (Show, Eq, Ord)

instance NFData Puzzle where
rn f puzz l e = puzz l e ‘ seq ‘ ()

i n i t P u z z l e : : [Int] −> Puzzle
i n i t P u z z l e xs = Puzzle b d dm z 0 Nothing

where
b = V. f romList xs
d = t o t a l D i s t b dm
dm = dimension b
z = fromMaybe (error ”Couldn ’ t f i n d ze ro t i l e ”) (V. elemIndex 0 b)

dimension : : Board −> Int
dimension = round . sqrt . fromIntegral . V. length

12

matr ix2array : : Int −> Int −> Int −> Int
matr ix2array n row c o l = n ∗ row + c o l

array2matr ix : : Int −> Int −> (Int , Int)
array2matr ix n i = (i ‘div ‘ n , i ‘mod‘ n)

manhattan : : Int −> Int −> Int −> Int −> Int
manhattan v n i j =

i f v == 0
then 0
else rowDist + c o l D i s t

where
rowDist = abs (i − ((v−1) ‘div ‘ n))
c o l D i s t = abs (j − ((v−1) ‘mod‘ n))

t o t a l D i s t : : Board −> Int −> Int
t o t a l D i s t b n = sum [manhattan (b ! matr ix2array n i j) n i j | i <− [0 . . n−1] , j <− [0 . . n−1]]

swap : : Puzzle −> Int −> Int −> Puzzle
swap p i j = p { board = b

, d i s t = t o t a l D i s t b n
, zero = k
, moves = moves p + 1
, prev ious = Just p }

where
k = matr ix2array n i j
b = prev // [(zero p , prev ! k) , (k , 0)]
prev = board p
n = dim p

move : : Puzzle −> Dir e c t i on −> Maybe Puzzle
move p d i r = case d i r of

UP −> i f i > 0
then Just $ swap p (i −1) j else Nothing

DOWN −> i f i < n−1
then Just $ swap p (i +1) j else Nothing

LEFT −> i f j > 0
then Just $ swap p i (j −1) else Nothing

RIGHT −> i f j < n−1
then Just $ swap p i (j +1) else Nothing

where
(i , j) = array2matr ix n (zero p)
n = dim p

parMapMaybe : : NFData b => (a −> Maybe b) −> [a] −> [b]
parMapMaybe f xs = runEval $ parL i s t rdeepseq (mapMaybe f xs)

13

ne ighbors : : Puzzle −> [Puzzle]
ne ighbors p = mapMaybe (move p) [UP, DOWN, LEFT, RIGHT]

o ldSo lve : : Puzzle −> Puzzle
o ldSo lve p = go (PQ. f romList [(d i s t p , p)])

where
go f r o n t i e r = i f d i s t puzz l e == 0

then puzz l e
else go newFrontier

where
((, puzz l e) , topFront i e r) = PQ. deleteFindMin f r o n t i e r

prev = case prev ious puzz l e of
Nothing −> ne ighbors puzz l e
Just n −> f i l t e r (\x −> board x /= board n) (ne ighbors puzz l e)

ps = zip [moves q + d i s t q | q <− prev] prev
newFrontier = foldr (uncurry PQ. insert) topFront i e r ps

s o l v e : : Puzzle −> IO Puzzle
s o l v e p = do

let psq = PQ. f romList [(d i s t p , p)]
solveParQ psq

solveParQ : : PQ. MinPQueue Int Puzzle −> IO Puzzle
solveParQ psq = do

let k = 5
i f PQ. s i z e psq < k then do

let ((, puzz l e) , topFront i e r) = PQ. deleteFindMin psq

l et prev = case prev ious puzz l e of
Nothing −> ne ighbors puzz l e
Just n −> f i l t e r (\x −> board x /= board n) (ne ighbors puzz l e)

l et ps = zip [moves q + d i s t q | q <− prev] prev
l et newFrontier = foldr (uncurry PQ. insert) topFront i e r ps
solveParQ newFrontier

else do
complete <− newEmptyMVar
threads <− forM [uncurry PQ. s i n g l e t o n x | x <− PQ. t o L i s t psq] $ \pqFork −> forkIO $ do

pSolved <− goSolve pqFork
void (tryPutMVar complete pSolved)

r e t <− readMVar complete
mapM k i l lThread threads

14

return r e t

goSolve : : PQ. MinPQueue Int Puzzle −> IO Puzzle
goSolve f r o n t i e r = i f d i s t puzz l e == 0

then return puzz l e
else goSolve newFrontier

where
((, puzz l e) , topFront i e r) = PQ. deleteFindMin f r o n t i e r

prev = case prev ious puzz l e of
Nothing −> ne ighbors puzz l e
Just n −> f i l t e r (\x −> board x /= board n) (ne ighbors puzz l e)

ps = zip [moves q + d i s t q | q <− prev] prev
newFrontier = foldr (uncurry PQ. insert) topFront i e r ps

boards : : Puzzle −> [[Int]]
boards p = map V. t o L i s t (reverse $ brds p)

where
brds q = case prev ious q of

Nothing −> [board q]
Just r −> board q : brds r

s t ep s : : IO Puzzle −> IO Int
s t ep s p = do

pUnwrapped <− p
l et r e t = length (boards pUnwrapped) − 1
return r e t

toBoard : : String −> [Int]
toBoard input = toIntBoard (words <$> (drop 1 . c l e a r I np u t . l ines $ input))

c l e a r I np u t : : [String] −> [String]
c l e a r I np u t xs = f i l t e r (/=””) $ map (head . sp l i tOn ”#”) xs

toIntBoard : : [[String]] −> [Int]
toIntBoard = concatMap (map read)

checkArgs : : [String] −> IO [String]
checkArgs a = i f null a then putStrLn ”Usage : s tack exec nparzz le−exe < f i l e >” >> exitSuccess else pure a

main : : IO ()
main = do

args <− checkArgs =<< getArgs
txt <− readFile $ head args

15

l et gameList = sp l i tOn ”#” txt
games = map toBoard gameList

−− p r i n t gameList
−− p r i n t games
−− p r i n t $ l e n g t h games
l et s o l s = map (s o l v e . i n i t P u z z l e) games
mapM (\ s o l −> do

numSteps <− s t ep s s o l
print numSteps

) s o l s

5 References

1. https://cse.buffalo.edu/faculty/miller/Courses/CSE633/Weijin-Zhu-Spring-
2020.pdf

2. https://doi.org/10.1002/int.10027

3. https://guptaanna.github.io/15418Project/

4. https://www.geeksforgeeks.org/check-instance-8-puzzle-solvable/

16

