
Parallelized 2048 Solver

Alex Bala and Michal Hajlasz

12/20/2023

1 Introduction

The game 2048 is a solo puzzle game involving a 4x4 grid in which players merge numbered tiles. Tiles
are numbered by powers of 2, and only tiles of the same value can merge to form a single tile with value
equal to the sum of the merged tiles. A move consists of sliding all tiles in one direction (up, down,
left, or right). After each move, the computer randomly places an additional 2 or 4-tile onto the board.
The objective of the game is to score a 2048 tile, although the game goes on until the player is out of
valid moves. Multiple methods can be used to program an agent to play this game. We explored a
Minimax-based solution that is sped up via parallelization in Haskell.

2 Sequential Solution

We used an ExpectMiniMax algorithm in order to produce our sequential solution without parallelization.
In this algorithm, we assume that the player is a maximizing agent, meaning that the player is trying
to maximize some utility function on their turn. In a normal minimax algorithm, the opponent tries to
minimize that utility function. However, since the opponent (computer) in reality is not antagonistic, we
simulate the computer’s turn with a random tile placement, thus reducing the computational complexity
of the algorithm. In order to quantify the utility of each possible move, we use a set of heuristics to
determine the value of a board. The weighted sum of the heuristics is what is passed up through the
minimax tree. In normal scenarios, this sequential algorithm could be sped up with alpha-beta pruning.
Given the nature of this project, we elected to not to do alpha-beta pruning to make parallelization more
straightforward.

3 Heuristics

We used the following set of heuristics to guide our tree search:

• stayAliveHeuristic: Largely penalizes any boards that result in no possible moves.

• finishedHeuristic: Emphasizes movements that get the player closer to 2048 or 4096

• sumHeuristic: Computes the sum of the tiles on the board.

• gradientHeuristic: Uses a gradient filter to score boards with larger tiles in the bottom left corner
higher.

• emptyTilesHeuristic: Tries to maximize the number of empty tiles on the board.

• monotonicityHeuristic: Ensures that among each row and column in the

• smoothnessHeuristic: Tries to avoid boards that are ”jagged”.

4 Parallel Solution

4.1 Strategy I

Our initial strategy was to parallelize the entire tree using parList. This resulted in speed up, but it was
inefficient in utilizing cores and resulted in a low spark conversion rate.

1

module Minimax where

...

bestMove :: Board -> IO (Maybe Direction)

bestMove board

| null validMoves = putStrLn "No valid moves available." >> return

Nothing

| otherwise = do

let best = fst $ maximumBy (comparing snd) validMoves

putStrLn $ "Best move: " ++ show best

return $ Just best

where

validMoves = filterMoves $ parallelizeMoves [U, D, L, R]

filterMoves = filter (\(dir , _) -> move dir board /= board)

parallelizeMoves dirs = map (\dir -> (dir , minimax (move dir board)

False 0)) dirs ‘using ‘ parList rdeepseq

minimax :: Board -> Bool -> Int -> Float

minimax board isMaximizer depth

| depth == maxDepth || not (canMove board) = evalHeuristic board

| isMaximizer = maximum $ parallelizeMinimax [move dir board | dir <- [U

, D, L, R], move dir board /= board] False (depth + 1)

| otherwise = minimum $ parallelizeMinimax [addRandomTile board] True (

depth + 1)

parallelizeMinimax boards maximizing depth = map (\b -> minimax b

maximizing depth) boards ‘using ‘ parList rdeepseq

...

4.2 Strategy II

Our second strategy (which we analyze in our figures) was to parallize some of the tree but not all of
it by limiting the parallelism to parts of the minimax tree where depth < 4. We also used parBuffer
indstead of parList. This decreased the number of sparks fizziling and allowed more cores to be utilized
at once.

bestMove :: Board -> IO (Maybe Direction)

bestMove board

| null validMoves = putStrLn "No valid moves available." >> return Nothing

| otherwise = do

let best = fst $ maximumBy (comparing snd) validMoves

putStrLn $ "Best move: " ++ show best

return $ Just best

where

validMoves = filterMoves $ parallelizeMoves [U, D, L, R]

filterMoves = filter (\(dir , _) -> move dir board /= board)

parallelizeMoves dirs = map (\dir -> (dir , minimax (move dir board) False

0)) dirs ‘using ‘ parBuffer 500 rdeepseq

minimax :: Board -> Bool -> Int -> Float

minimax board isMaximizer depth

| depth == maxDepth || not (canMove board) = evalHeuristic board

| depth > 4 =

if isMaximizer

then maximum [minimax newBoard False (depth + 1) | dir <- [U, D, L, R],

let newBoard = move dir board , newBoard /= board]

else minimax (addRandomTile board) True (depth + 1)

| otherwise =

if isMaximizer

2

then maximum $ parallelizeMinimax [move dir board | dir <- [U, D, L, R

], move dir board /= board] False (depth + 1)

else minimax (addRandomTile board) True (depth + 1)

parallelizeMinimax boards maximizing depth = map (\b -> minimax b maximizing

depth) boards ‘using ‘ parBuffer 500 rdeepseq

5 Speedup

We saw noticeable speedup thorugh our second strategy. The table and graph are from an average of 5
trials on each number of cores.

of Cores Speed Up Spark Conversion Rate
1 1 0%
2 1.58 20%
3 1.65 53%
4 1.73 70%
5 1.71 76%
6 1.66 81%
7 1.74 82%
8 1.8 84%

Table 1: Performance Metrics

Figure 1: Speedup vs # of Cores

3

6 Core Usage and Sparks

Overall, we saw that workload was pretty even. Threadscope shows good distribution among the 4 cores
and that on average between 2 and 3 cores are being used at a time. Given the nature of our algorithm,
we believe that this is decent. In addition, spark conversion rate is above 70%.

Figure 2: 4 Core Performance

4

7 Depth Considerations

There is a tradeoff between how many levels we traverse in the decision tree, score, and time taken
between moves. While parallel strategies will not affect the score of the game (where we considered score
to be the value of the highest tile at the endgame state), we are still concerned with trying to maximize
this score. However we are more concerned with speed here, and hence we chose a maximum depth of
10 to balance score performance, speed, and spark conversion rate.

Figure 3: Depth vs Score

8 Further Considerations

While we were able to get noticeable speedups, we think there is still more work to be done on this
project. Notably, we think there are other ways to parallelize this program that are more scalable. As
we increase the number of cores available, we think that it should be possible to use more cores at a time
and continue to speed up the program. In addition, along with parallel methods for efficiency we would
like to explore adding sequential methods such as alpha-beta pruning.

5

9 Board.hs

module Board where

import System.Random

import Data.List (elemIndices , transpose)

import Control.Parallel.Strategies

import Control.DeepSeq

type Board = [[Int]]

data Direction = U | D | L | R

deriving (Enum , Bounded)

instance NFData Direction where

rnf _ = ()

instance Show Direction where

show U = "Up"

show D = "Down"

show L = "Left"

show R = "Right"

instance Read Direction where

readsPrec _ value =

case value of

"Up" -> [(U, "")]

"Down" -> [(D, "")]

"Left" -> [(L, "")]

"Right" -> [(R, "")]

_ -> []

instance Eq Direction where

U == U = True

D == D = True

L == L = True

R == R = True

_ == _ = False

instance Ord Direction where

compare U U = EQ

compare U _ = LT

compare _ U = GT

compare D D = EQ

compare D _ = LT

compare _ D = GT

compare L L = EQ

compare L _ = LT

compare _ L = GT

compare R R = EQ

moveLeft :: Board -> Board

moveLeft b = map slideRowLeft b where

slideRowLeft [] = []

slideRowLeft [x] = [x]

slideRowLeft (x:y:zs)

| x == 0 = slideRowLeft (y : zs) ++ [0]

| y == 0 = slideRowLeft (x : zs) ++ [0]

| x == y = (x + y) : slideRowLeft zs ++ [0]

| otherwise = x : slideRowLeft (y : zs)

move :: Direction -> Board -> Board

6

move U b = transpose . moveLeft . transpose $ b

move D b = transpose . map reverse . moveLeft . map reverse . transpose $ b

move L b = moveLeft b

move R b = map reverse . moveLeft . map reverse $ b

getEmptyTiles :: Board -> [(Int , Int)]

getEmptyTiles b = concatMap (\(n, row) -> zip (replicate 4 n) (elemIndices 0

row)) (zip [0..3] b)

randomTileValue :: IO Int

randomTileValue = do

x <- randomRIO (1, 10 :: Int) --assumes 90/10 2/4 probability

return $ if x == 1 then 4 else 2

selectRandomTile :: [(Int , Int)] -> IO (Maybe (Int , Int))

selectRandomTile [] = return Nothing

selectRandomTile tiles = do

i <- randomRIO (0, length tiles - 1)

return $ Just (tiles !! i)

updateTile :: (Int , Int) -> Int -> Board -> Board

updateTile (r, c) val b = updateIndex (updateIndex (const val) c) r b where

updateIndex fn i list = take i list ++ fn (head $ drop i list) : tail (drop

i list)

addTile :: Board -> IO Board

addTile b = do

let emptyTiles = getEmptyTiles b

newValue <- randomTileValue

maybePoint <- selectRandomTile emptyTiles

case maybePoint of

Just newPoint -> return $ updateTile newPoint newValue b

Nothing -> return b -- No more empty tiles , return the board as is

getAvailableMoves :: Board -> [Board]

getAvailableMoves b = map (\x -> move x b) $ filter (\dir -> validMove dir b)

moves

where moves = [U,D,L,R]

validMove :: Direction -> Board -> Bool

validMove dir b = move dir b /= b

-- PRINT

printBoard :: Board -> IO ()

printBoard b = do

putStrLn "-------------"

putStrLn $ show (b !! 0)

putStrLn $ show (b !! 1)

putStrLn $ show (b !! 2)

putStrLn $ show (b !! 3)

putStrLn "-------------"

7

10 Minimax.hs

module Minimax where

import Board

import Heuristics

import System.Random

import Data.List (maximumBy)

import Data.Ord (comparing)

import System.IO.Unsafe (unsafePerformIO)

import Control.Parallel.Strategies

bestMove :: Board -> IO (Maybe Direction)

bestMove board

| null validMoves = putStrLn "No valid moves available." >> return Nothing

| otherwise = do

let best = fst $ maximumBy (comparing snd) validMoves

putStrLn $ "Best move: " ++ show best

return $ Just best

where

validMoves = filterMoves $ parallelizeMoves [U, D, L, R]

filterMoves = filter (\(dir , _) -> move dir board /= board)

parallelizeMoves dirs = map (\dir -> (dir , minimax (move dir board) False

0)) dirs ‘using ‘ parBuffer 500 rdeepseq

minimax :: Board -> Bool -> Int -> Float

minimax board isMaximizer depth

| depth == maxDepth || not (canMove board) = evalHeuristic board

| depth > 4 =

if isMaximizer

then maximum [minimax newBoard False (depth + 1) | dir <- [U, D, L, R],

let newBoard = move dir board , newBoard /= board]

else minimax (addRandomTile board) True (depth + 1)

| otherwise =

if isMaximizer

then maximum $ parallelizeMinimax [move dir board | dir <- [U, D, L, R

], move dir board /= board] False (depth + 1)

else minimax (addRandomTile board) True (depth + 1)

parallelizeMinimax boards maximizing depth = map (\b -> minimax b maximizing

depth) boards ‘using ‘ parBuffer 500 rdeepseq

-- Helper function to simulate adding a random tile

addRandomTile :: Board -> Board

addRandomTile board = unsafePerformIO $ do

let emptyTiles = getEmptyTiles board

maybePoint <- selectRandomTile emptyTiles

newValue <- randomTileValue

return $ case maybePoint of

Just point -> updateTile point newValue board

Nothing -> board -- Return the board as is if no empty tile is available

maxDepth :: Int

maxDepth = 10 -- Adjust the depth as needed

canMove :: Board -> Bool

canMove b = any (\d -> move d b /= b) [U, D, L, R]

8

11 GameManager.hs

module Main where

import System.Random

import Control.Monad (when)

import Board

import Minimax

import Data.Time.Clock

import Data.Csv

import qualified Data.ByteString.Lazy as BL

import qualified Data.Vector as V

data GameState = GameState {

board :: Board ,

isPlayerTurn :: Bool ,

gameOver :: Bool

}

-- Initialize the game state with two random tiles

initGame :: IO GameState

initGame = do

initialBoard <- addTile =<< addTile (replicate 4 (replicate 4 0))

return $ GameState initialBoard True False

-- Check if the game is over

checkGameOver :: Board -> Bool

checkGameOver b = null (getEmptyTiles b) && not (canMove b)

doublesToCsv :: [Double] -> BL.ByteString

doublesToCsv doubles = encode $ map (\x -> [x]) doubles

data TimeRecord = TimeRecord { timeTaken :: Double }

instance ToRecord TimeRecord where

toRecord (TimeRecord t) = record [toField t]

gameLoop :: GameState -> [Double] -> IO ()

gameLoop state d

| gameOver state = do

putStrLn $ "Game Over!"

putStrLn $ "Score: " ++ show (maximum (map maximum (board state)))

BL.writeFile "output6 -2. csv" $ doublesToCsv d

| otherwise = do

printBoard (board state)

if isPlayerTurn state

then do

startTime <- getCurrentTime

newState <- playerTurn state

endTime <- getCurrentTime

let timeTaken = realToFrac $ (diffUTCTime endTime startTime) ::

Double

gameLoop newState $ d ++ [timeTaken]

else do

newState <- computerTurn state

gameLoop newState $ d

-- Handle player ’s turn

playerTurn :: GameState -> IO GameState

playerTurn state = do

let b = board state

moveDir <- bestMove b -- ‘Maybe Direction ‘

case moveDir of

9

Just dir -> do

let newBoard = move dir b

return state {board = newBoard , isPlayerTurn = False}

Nothing ->

return state

-- Handle computer ’s turn by adding a random tile

computerTurn :: GameState -> IO GameState

computerTurn state = do

newBoard <- addTile (board state)

let newState = state {board = newBoard , isPlayerTurn = True}

return newState {gameOver = checkGameOver newBoard}

-- Start the game

main :: IO ()

main = do

a <- initGame

gameLoop a []

10

12 Heuristics.hs

module Heuristics where

import Board

import Data.List (transpose , foldl ’)

printScore :: Board -> IO ()

printScore b = do

putStrLn $ show (smoothnessHeuristic b)

putStrLn $ show (monotonicityHeuristic b)

putStrLn $ show (emptyTilesHeuristic b)

putStrLn $ show (gradientHeuristic b)

putStrLn $ show (finishedHeuristic b)

putStrLn $ show (stayAliveHeuristic b)

putStrLn $ show (sumHeuristic b)

putStrLn $ "Total: " ++ show (evalHeuristic b)

return ()

evalHeuristic :: Board -> Float

evalHeuristic b = realToFrac $ sum $ zipWith (*) weights funcs

where weights = [1 ,1 ,1 ,1 ,0.25 ,1000000 ,90000]

funcs = [logBase 2 $ sumHeuristic b,

smoothnessHeuristic b,

monotonicityHeuristic b,

logBase 2 $ gradientHeuristic b,

finishedHeuristic b,

stayAliveHeuristic b]

sumHeuristic :: Board -> Double

sumHeuristic b = fromIntegral $ sum $ map sum b

emptyTilesHeuristic :: Board -> Double

emptyTilesHeuristic b = fromIntegral $ length (getEmptyTiles b)

stayAliveHeuristic :: Board -> Double

stayAliveHeuristic b

| (getAvailableMoves b == []) = -1

| otherwise = 0

--The following Heuristics are modified from an older project from pfp2048 2021

project

smoothnessHeuristic :: Board -> Double

smoothnessHeuristic b = (foldr smoothHelper 0 b) + (foldr smoothHelper 0 $ (

transpose b)) where

smoothHelper :: [Int] -> Double -> Double

smoothHelper (x:y:zs) total

| x == y = smoothHelper (y:zs) total + 1

| otherwise = smoothHelper (y:zs) total

smoothHelper _ total = total

monotonicityHeuristic :: Board -> Double

monotonicityHeuristic b = fromIntegral $ (fst $ foldl ’ helper (0,0) b) + (fst

$ foldl ’ helper (0,0) (map reverse $ transpose b)) where

helper :: (Int ,Int) -> [Int] -> (Int ,Int)

helper (total , score) (f:s:tl)

| tl == [] = (total , score)

| (f == s) && (s==0) = helper (total , score) (s:tl)

| f >= s = helper (total+score , score +1) (s:tl)

| f < s = (total , score)

gradientHeuristic :: Board -> Double

gradientHeuristic b = realToFrac $ sum $ map sum $ zipWith (zipWith (*)) b filt

11

where filt = [[0,0,0,0], [128, 1, 0, 0], [512, 128, 1, 0], [2048 ,

512, 128, 1]]

finishedHeuristic :: Board -> Double

finishedHeuristic b

| maximum (map maximum b) == 4096 = 100

| maximum (map maximum b) == 2048 = 1

| otherwise = 0

12

