
Parallel Functional Programming Final Project Proposal
MapReduce Word Frequency Search

Patricia Luc (pbl2116), Arush Sarda (as6785), Sarah Yang (sy3038)
November 27, 2023

Project Overview

For the �nal project, we propose an extension to the original MapReduce application of counting the
frequencies of words from a large stream of text-based input. Given that this alone will heavily depend on I/O in
terms of performance, we will augment the program to include an on-demand word search capability once the
word counts have been calculated. Users can search for terms from the word counts taken from the text input. If
a term cannot be found within the word frequencies, we will run a fuzzy match algorithm incorporating
Levenshtein distance to �nd similar matching words. This project aims to turn the typical non-parallelizable,
I/O bound word count problem into a parallelizable project of substance.

Background

Here is a high-level overview of how this project would be performed without parallelization:
● MapReduce Map Stage

○ Since this is a sequential approach, iterate over every input token within the text �le and create
key-value pairs of that token and the number 1.

● MapReduce Reduce Stage
○ Iterate over the key-value pairs and sum them up, producing the count of each word in the text

● Take in user input words, and search up their frequency in the map
○ If the word exists in the map, return the count
○ Otherwise, run a fuzzy search on every key inside the map, �nding the Levenshtein distance

between the input word and the key, and rank the most similar key words. Return the most
similar word and its respective count within the map

Parallelization

The algorithm allows for multiple opportunities for parallelization. Firstly, the MapReduce word count
algorithm can be parallelized as follows:

1. Given K cores, split the input �le in K chunks, one assigned to each core
2. For each core:

a. Complete the map stage of MapReduce on the given �le chunk
b. Complete the reduce stage of MapReduce

3. Aggregate reduce stage outputs for all K cores, store into one map

Secondly, the word search algorithm can also be parallelized in the case that the search word does not exist in the
map. The idea is as follows:

1. Given K cores, split the word count map into K chunks, one assigned to each core
2. For each core:

a. Iterate every word the map chunk, and calculate the Levenshtein distance between each word
and the search word

3. Compare the intermediate closest words from each chunk, and return the word that is closest to the
search word

References

[1] https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
[2] https://redis.com/blog/what-is-fuzzy-matching/
[3]https://medium.com/@ethannam/understanding-the-levenshtein-distance-equation-for-beginners-c4285a56
04f0

https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
https://redis.com/blog/what-is-fuzzy-matching/
https://medium.com/@ethannam/understanding-the-levenshtein-distance-equation-for-beginners-c4285a5604f0
https://medium.com/@ethannam/understanding-the-levenshtein-distance-equation-for-beginners-c4285a5604f0

