
Project Proposal for Functional Parallel Programming

By Griffin Newbold (gcn2106),
Sparsh Binjrajka (sb4835),
Anna Christensen (ajc2321)

I. Introduction

After class on the 13th of the current month, I had asked Professor Edwards what kinds
of algorithms we should consider for parallelization. He told me and the others that
remained to choose an algorithm or process that had grabbed our attention. Nothing fit
that criteria for me, I am not one to look at breadth-first search and salivate. To me the
joy of programming comes from the result of what I could make using data structures and
algorithms, not the data structures and algorithms themselves. Especially after working so
hard to land an internship I can simply not find low level joy in those anymore, it only
made me more of an applications individual rather than more theory oriented.

That all being said, I am not one to simply overlook all that has passed me by, if I have to
choose a topic that stems from something that grabbed my attention. Well the field
narrowed quickly, one of the greatest things I have been a continual part of in my time at
Columbia since my second semester is being a Teaching Assistant. I have worked each
semester so far under Professor Adam Cannon. In the fall he teaches a course called
Computing in Context. In honor of this being my last semester as a teaching assistant for
that course, I take inspiration from there for my project. The second project given to
students who undergo the economics context deals with options pricing, specifically in
regards to monte carlo simulations. Primarily students were asked to develop monte carlo
simulation algorithms with regards to european and asian call options.

II. Overview

The main premise is a parallelization of monte carlo simulations with respect to options
pricing. We would provide implementations for the european call option, the asian call
option as well as the down and out barrier option. For reference the european call’s
exact pricing formula is the following:

𝐶
0

= 1

(1+𝑟)𝑇
𝑘=0

𝑇

∑ (𝑇 𝐶 𝑘)(𝑝*)𝑘(1 − 𝑝*)𝑇−𝑘(𝑢𝑘𝑑𝑇−𝑘𝑆
0

− 𝐾)+

With the following being the definition of p*:

𝑝* = 1 + 𝑟 − 𝑑
𝑢 − 𝑑

Of course you can lose some of the details by wrapping it in a monte carlo simulation
which is what the students are asked to do along with using this exact formula. I will omit
the details for the Asian call option but they will be included in the full report. The more
trials of the monte carlo simulation you perform the closer you get to the exact answer by
the law of large numbers.

III. Algorithmic Details

As for how I would go about doing this, I would start off with the sequential versions and
then as far as parallelization is concerned just going off of initial thinking, I could make
use of the parMap rpar function from Control.Parallel.Strategies. Other options may
come in handy as well.

As for input sizes and testing. For standard unit testing to make sure the results I get are
proper, I will be using the values expected of the students to solve for since I can trust
their accuracy and since I have concrete access to them. We can stress test both the
sequential and parallel versions of the simulation with increasing the magnitude of the
quantity of simulations.

We can also try differing numbers of cores in order to determine where we start seeing
diminishing returns. In the event the final presentation requires a demo then for that I will
be using a 2020 M1 Macbook air, but all figures and data will come from my desktop
which, for reference, and this will be stated again in the report but the machine I will be
using to develop and run my simulations is equipped with the following specifications:

● CPU: 11th Gen Intel Core i7-11700k @ 3.60 Ghz (tldr 8 cores 16 threads)
● GPU: NVIDIA GeForce RTX 3060 Ti
● Ram: 16 gigs of 3200 Mhz

