
Parallel Functional Programming Proposal:

MazeSolver

Samya Ahsan (ska2138), Nicole Lin (nsl2126), Alice Wang (aw3271)

Fall 2023

1 Background & Objective

Rat in a Maze is a game set up as a maze on a two-dimensional nxn grid,
where certain cells are marked as True (representing paths) and others as False
(representing walls). The goal is to find the shortest distance to navigate a ’rat’
from the start point (0, 0) to the end point (n−1, n−1) in the maze. The output
is a list containing the shortest path found by the maze solver, represented as a
list of positions (x, y).

2 Approach

Our approach involves finding a path through a maze from a starting position
to a goal position. The maze is represented as a 2D grid, and each processor
concurrently explores different paths within the maze, allowing for substantial
parallelism.

The Control.Parallel.Strategies module is utilized to express parallelism con-
veniently. The ‘par’ is utilized to evaluate multiple paths concurrently. This
enables the solver to efficiently navigate through the maze and discover multiple
paths simultaneously.

3 Key Components

1. The maze is represented as a 2D list of Booleans, where True represents
an open space, and False represents a wall. Positions within the maze are
denoted as pairs of integers (x, y).

2. Represent the rat’s position as a pair of coordinates (x,y).

3. Create functions that move the rat up, down, left, or right. Ensure that
these movements are valid (not going out of bounds and not moving into
walls).

1



4. The main exploration function recursively explores paths using backtrack-
ing. Parallel strategies are employed to distribute the exploration of mul-
tiple paths across processors.

a Spawn different threads for different possible paths using paralleliza-
tion (‘par’). For instance, if the rat can move both right and up, you
can evaluate these moves in parallel.

b Paths are extended by exploring next positions, ensuring that posi-
tions are not revisited to prevent infinite loops.

5. Return when the endpoint has been reached. The returning thread will
be the shortest path.

This parallelized maze solver should show improved performance, especially
on large mazes, by efficiently utilizing multiple processing units.

2


