COMS4995 Parallel Functional Programming Project Proposal
Clique Problem with Bron—Kerbosch Algorithm

Xuezhen Wang, Songheng Yin
Uni: ww2604, sy3079

1 Overview

The project aims to implement the Bron-Kerbosch algo-
rithm using Haskell to identify all maximal cliques within
an arbitrary undirected graph.

The implementation will include both a single-
threaded sequential version and a parallelized counter-
part. Our objective is to analyze their performance to
assess the impact and effectiveness of parallelism in this
context.

2 Background

2.1 Definitions

In an undirected graph G = (V, E). A clique C is a sub-
set of the vertices, C' C V, such that every two distinct
vertices are adjacent, that is, the induced subgraph by C'
is a complete graph K|g.

A maximal clique is a clique that cannot be ex-
tended by including one more adjacent vertex, that is, a
clique which does not exist exclusively within the vertex
set of a larger clique.

A maximum clique of a graph is a clique such that
there is no clique with more vertices. Moreover, the
clique number w(G) of a graph G is the number of ver-
tices in a maximum clique in G.

Note the difference between maximal clique and max-
imum clique: a maximum clique is always maximal, the
converse is not always true.

2.2 Problem

The clique decision problem asking for if a clique of size
k exists in the given graph. It was one of Richard Karp’s
original 21 problems shown NP-complete in |Cook| [1971]
and [Karp| [1972]

Our task, a variant of the clique decision problem,
is to list all the maximal cliques given an undirected
graph G.

It is easy to know the problem is impossible to be
done in polynomial running time since it can derive the
answer to the clique decision problem trivially.

3 Algorithm

The Bron-Kerbosch algorithm, designed by |Bron and
Kerbosch/ [1973], is an enumeration algorithm for find-
ing all maximal cliques in an undirected graph.

1: function BRONKERBOSCH(R, P, X)

2: if P and X are both empty then

3: Report R as a maximal clique > A maximal
clique is found

4: end if

5: for each vertex v in P do

6: BRONKERBOSCH(RU{v}, PNN(v), XNN (v))
> Explore extensions of R including v

7: P« P\ {v} > Remove v from potential
clique extensions

8: X+~ XU{v} > Add v to excluded set for
this recursion level

9: end for

10: end function

The Bron-Kerbosch algorithm uses three sets R, P, and
X to find maximal cliques in an undirected graph:

1. R (Reported Clique): This set starts empty and
grows as the algorithm progresses. It represents
the current clique being constructed. When both
P and X are empty, R is a maximal clique and is
reported as such.

2. P (Potential Nodes): This set contains vertices that
are connected to all vertices in R and might be in-
cluded in the clique. These are potential candidates
to be added to R. The algorithm iteratively moves
vertices from P to R to explore the expansion of
the current clique.

3. X (Excluded Nodes): This set also starts empty
and contains vertices that have been considered for
inclusion in R and found not to lead to a maximal
clique (in the current path of the search). It helps
to avoid re-examining the same vertex within the
same recursive call.

4 Objectives and Workflow

4.1 Experiment Preparation

We will use a script to generate a large dataset includ-
ing both random data and corner cases as the input to
our Haskell program. The expected solution is gener-
ated simultaneously and can be used later to verify the
correctness of our algorithm implementation.

4.2 Experiment Design

We are going to run the naive sequential and parallel
algorithms respectively and monitor their performances.
To ensure the effect of parallelism with GHC, we run with
the —-threaded, -02 options as well as +RTS -N1 to -N8
on an 8-core machine.

References

Coenraad Bron and Joep Kerbosch. Algorithm 457: find-
ing all cliques of an undirected graph, 1973. URL
https://dl.acm.org/doi/10.1145/362342.362367.

https://dl.acm.org/doi/10.1145/362342.362367

Stephen A. Cook. The complexity of theorem-proving
procedures, 1971. URL https://dl.acm.org/doi/
10.1145/800157.805047.

Richard M. Karp. Reducibility among com-
binatorial problems, 1972. URL https:
//web.archive.org/web/20110629023717 /http:
//www.cs.berkeley.edu/~1luca/csl172/karp.pdf.

https://dl.acm.org/doi/10.1145/800157.805047
https://dl.acm.org/doi/10.1145/800157.805047
https://web.archive.org/web/20110629023717/http://www.cs.berkeley.edu/~luca/cs172/karp.pdf
https://web.archive.org/web/20110629023717/http://www.cs.berkeley.edu/~luca/cs172/karp.pdf
https://web.archive.org/web/20110629023717/http://www.cs.berkeley.edu/~luca/cs172/karp.pdf

	Overview
	Background
	Definitions
	Problem

	Algorithm
	Objectives and Workflow
	Experiment Preparation
	Experiment Design

