
Group Members: Justin Peng (jfp2130), Akash Nayar (akn2120)

Project Name: Howard

Our idea for the final project is to create a two-dimensional ray-casting simulation. The project

will use the terminal to display a birds-eye view of a configurable 2D environment. This environment is

essentially a matrix consisting of 0’s (empty space) or 1’s (walls). The user will then be able to place

multiple light sources throughout the environment and watch the light appropriately spread and fill out the

available space.

Light rendering algorithms have seen increasing popularity in recent years. Many methods such

as ray tracing, simulate individual “rays” of light, tracking their movement through space and how they

interact with objects. The propagation of rays is simulated via time-stepping methods, meaning that each

ray travels through the scene in incremental steps, and information about the ray is updated as it continues

propagating throughout the scene. In a practical use case, millions of rays are propagated throughout the

scene and their interaction with the environment is tracked simultaneously. Furthermore, attributes like a

ray’s current brightness, or its index of refraction require relatively intensive calculation. Thus, light

rendering algorithms often require powerful hardware.

Light ray propagation presents an interesting candidate for parallelization. The nature of

individually simulated light rays and time-stepping methods allow us to subdivide the work of the

simulation between threads. It is possible to subdivide the light rays in the scene between threads or mark

the light rays emitting from specific light sources to be handled by a specific thread.

We plan to use the terminal window as our user interface. Space

characters will represent empty space, ‘X’ characters will represent

walls, and ‘O’ characters will represent a light source. Similar to the

donut on the right, characters such as ‘#’, ‘$’, ‘!’, and ‘=’ will denote

varying levels of light intensity.

We will create vectors stemming from our

light source at regular intervals of angles and

propagate them in small increments (perhaps

1/10th of the grid granularity), as seen in the

diagram on the right. We can represent a light

source by creating a type in Haskell, storing the

position, and luminosity of the light. We can

represent a ray by creating a type in Haskell,

storing the current angle, position, the originating light source, and brightness of the ray. The propagation

could be done using list comprehensions or mapping in Haskell: For a given ray with unit direction

, we begin at the light source. We increment the position of the ray by , where is< 𝑥, 𝑦 > 𝑐 ·< 𝑥, 𝑦 > 𝑐

some small constant. The ray’s new position is . We then update the< (1 + 𝑐) · 𝑥, (1 + 𝑐) · 𝑦 >

brightness of the current cell based on the ray’s new state. We continuously update the list until each ray’s

encompassing grid block is either a wall or outside the bounds of the environment. To account for

collision with a wall, we check the current grid element of the ray. If that element corresponds to a wall,

or the ray’s current position is within a certain distance of a wall, then our ray has intersected with an

object and should thus be terminated. The light will have a brightness calculated using the equation

, where is the luminosity of the light source and is the distance from the light source. Users𝑏 = 𝐿/𝑑2 𝐿 𝑑

will be able to move a light source using the WASD keys and place it in position using the enter key.

Once this happens, the current light source will be locked in place and a new one will be added in to be

moved around by the user.

We plan to parallelize the light calculations for each different light source by assigning a light

source to an individual thread. Thus, adding in more light sources should not increase the render time of

each frame (at least until we exhaust all the cores on the machine). Alternatively, we may also explore

subdividing groups of rays to be handled by different threads, by having a thread continuously update its

group of rays until they are all terminated.

