
COMS W4995 Parallel Functional Programming November 27, 2023

Hitori Project Proposal

Peter Yao (pby2101) Ava Hajratwala (ash2261)

Introduction to Hitori

Hitori is a single-player logic puzzle game that is NP-complete. The initial setup of the puzzle is a grid of
numbers, where the player has to shade in speci�c cells to satisfy three rules: (1) No row or column may
contain the same unshaded number more than once (2) shaded cells cannot lie adjacent to other shaded
cells, although diagonals are allowed, and (3) all unshaded cells in the solved puzzles must be orthogonal to
one another (there can be no unshaded "islands"). Here is an example of an unsolved puzzle and the solved
solution1:

(a) Starting Board State (b) Solved Board State

Figure 1: Hitori Boards

Known Implementations in Haskell

The known algorithms for solving this puzzle involve a brute force backtracking algorithm, similar to many
Sudoku implementations. Some pruning can help speed up the performance so that depth-�rst-search does
not have to explore so many nodes. For each node, the algorithm has to perform steps to check that all
the rules from above are satis�ed. More importantly, we will also need a function that veri�es rule (3) is
satis�ed. We can implement this check using the "number of islands" problem with early termination.

There are only a few existing implementations of Hitori solvers written in Haskell. Speci�cally, we plan to
adapt code from this library as a starting point for our code.2 We can make the code slightly more e�cient
by adding additional logic for tree pruning using existing game-solving strategies, such as those mentioned
on this website.3

Improvements with Parallelization

Because Hitori has arbitrarily large board sizes, we can scale the size of this problem without simply having
the program solve thousands of boards. Additionally, two tree traversals are involved, with the larger tree
containing all the board states and the smaller tree containing shaded and unshaded cells. We see two areas
where parallelization could help speed up the implementation.

1Source: https://baileyspuzzles.com/how-to-play-hitori/
2Github: https://github.com/nrpeterson/fxhitori/tree/master
3Conceptis Puzzles: https://www.conceptispuzzles.com/index.aspx?uri=puzzle/hitori/techniques

1

https://github.com/nrpeterson/fxhitori/tree/master
https://www.conceptispuzzles.com/index.aspx?uri=puzzle/hitori/techniques


COMS W4995 Parallel Functional Programming November 27, 2023

Possible Approaches to this Project

One approach to this project is to follow Simon Marlow's general approach in his Sudoku solver. Because
this puzzle uses a backtracking DFS algorithm similar to the Sudoku solver, we can apply his techniques to
our implementation.

An alternative approach is a variation of puzzle generation. Most puzzle databases that we can �nd contain
puzzles of up to 25x25 cells. Although puzzle generation can be done trivially (shade cells that don't create
islands and number each cell as a di�erent number), it could be an interesting challenge to determine, given
a grid and some valid shading of cells, what is the smallest range of numbers necessary to create a solvable
puzzle. Here, our algorithm would be more similar to a k-coloring graph problem. However, we are still
looking for any existing implementations of this.

Concerns

Like sudoku, solvable Hitori boards on the internet seem to have a �maximum complexity� because there isn't
a massive database for large boards. Additionally, some Hitori solvers claim to be able to solve most 25x25
boards in under a second.4 So far, we have only been able to �nd boards of this size or smaller, meaning
that if we want to work with larger boards, we'll need to generate solvable boards programmatically, which
could get complicated. If we only have small boards, we have concerns about overhead from parallelism on
such a small timescale. However, we won't need large puzzles if we choose to go the Marlowe route (multiple
puzzles at once).

4Source: https://hitori-solver.appspot.com/

2


