
Project Proposal: CheckersBot

Kavika Krishnan - kk3526@columbia.edu
Catarina Coelho - mdc2234@barnard.edu

Overview
Context:
The game of checkers has been around for centuries and involves an nxn board with circular pieces.
In our setup, we will use an 8x8 checkerboard. Each player starts with 12 pieces, either "pawns"
or "kings," arranged on the three rows closest to them in the "straight checkers" starting position
seen below. The goal is to either capture all of the opponent’s pieces or block their moves. Pawns
move diagonally forward, capturing opponents by jumping over them. When a pawn reaches
the opposite end of the board, it becomes a "king." Kings gain the ability to move diagonally
backward, enhancing their capturing potential. Opponent pieces are captured by jumping over
them diagonally, and multiple captures can be made in a single turn, especially with kings.The
game concludes when a player cannot make a move, which is done by capturing all opponent pieces
or strategically limiting their moves.

Goal:
Our project, "CheckersBot", will involved creating a bot capable of playing and defeating a user
at the classic game of checkers. Using parallelization in Haskell, our primary goal is to implement
and compare two different algorithms for the bot, providing insights into their performance and
efficiency.

Algorithm 1: Minimax with α− β pruning
We will first use the classic Minimax method to identify the best move for the checkers-playing
bot. The method works by systematically traversing a N-ary game tree, which represents potential
actions and counter-moves. The algorithm alternates between maximizing and decreasing the
heuristic values associated with alternative outcomes at each level of the tree. The number of
movements forward that the algorithm considers is determined by the depth of the tree, which
influences the quality of decision-making. To optimize the search process, we will use Alpha-
Beta Pruning. Alpha-Beta Pruning is a technique that removes branches from the game tree
that have no bearing on the ultimate choice, hence minimizing the search space. By intelligently
rejecting "useless" pathways, the method significantly improves computational efficiency without
compromising decision quality.

1



Algorithm 2: Monte Carlo Tree Search
We will employ Monte Carlo Tree Search (MCTS) in our second algorithm. This method relies on
heuristics and is centered on statistical sampling and random simulations. During decision-making,
MCTS dynamically constructs a tree structure as opposed to expressly using a N-ary game tree.
Four iterative steps are carried out by the algorithm: simulation, backpropagation, expansion, and
selection. MCTS analyzes the worth of various moves by using random simulations from a given
game state, facilitating more exploratory and adaptive decision-making.

How our bot will operate
• First the user will select an algorithm from the aforementioned two

• The initial game board will be printed, with the starting player (i.e whether the user or the
boat is red/black) randomly chosen. It will look something like the following:

a b c d e f g h
1 - r - r - r - r
2 r - r - r - r -
3 - r - r - r - r
4 - - - - - - - -
5 - - - - - - - -
6 b - b - b - b -
7 - b - b - b - b
8 b - b - b - b -

• The user/bot expresses their move in a form like "a6 to b5"

• The new board is printed, with any captured pieces omitted or kings denoted as "bk", "rk"

• Game continues until either the user or bot cannot make a move/

How we will parallelize
We will use parallelization to concurrently explore of potential moves within the Minimax and
MCTS algorithms. Specifically, we can use parMap and rdeepseq to get the optimal move for the
chosen algoirthm.

References
https://doi.org/10.29407/intensif.v5i2.15863
https://mendel-journal.org/index.php/mendel/article/view/163
https://github.com/alsoltani/Checkers
https://github.com/dimitrijekaranfilovic/checkers

Images
https://en.wikipedia.org/wiki/File:Draughts.svg
https://raw.githubusercontent.com/AboorvaDevarajan/Parallel-Checkers-Game/master/images/1.png

2


