
Project Proposal: 2048Solver

Alex Bala (ajb2320) & Michal Hajlasz (mah2350)

November 27, 2023

1 Introduction

The game 2048 is a solo puzzle game involving a 4x4 grid in which players merge
numbered tiles. Tiles are numbered by powers of 2, and only tiles of the same
value can merge to form a single tile with value equal to the sum of the merged
tiles. A move consists of sliding all tiles in one direction (up, down, left, or
right). After each move, the computer randomly places an additional 2 or 4-tile
onto the board. The objective of the game is to create a 2048 tile, although the
game goes on until the player is out of valid moves.

2 Algorithm

We will use an expectminimax algorithm that chooses the next player’s move by
(incorrectly) assuming that the computer is intentionally placing new tiles on
the board in a way to stop the game as soon as possible. We will use multiple
heuristics to form a utility function that the player is trying to maximize and
the computer will attempt to minimize. These heuristics will be decided based
on what we find works best (i.e. what results in the highest game score) and
we will also employ (at least some) alpha-beta pruning to reduce computation
time.

3 Parallelism

We will parallelize our 2048 solver as follows:

• Concurrent State Evaluation: After a move is made by the player or
AI, the game states will be evaluated concurrently. When deciding which
of the four possible moves to make, each of these choices are independent
of each other and can be run in parallel.

• Heuristic Evaluation: Since we are using multiple heuristics to guide
our minimax search, we will run each of these heuristic calculations in
parallel.

1



• Separate State Management: We will use separate state management
in our program. Each thread or process will operate on its independent
copy of the game state. This approach eliminates the need for synchro-
nization, as there are no shared data structures, thereby reducing the risk
of data races. However, it increases memory usage as each parallel unit
maintains its own state copy.

• Dynamic Task Allocation: If we have time, we may implement dynamic
task allocation to adjust the parallel workload based on runtime perfor-
mance metrics. This helps in optimizing the parallel processing based on
the current computational load.

• Parallelism with Alpha-Beta Pruning: We will try to find a way to
combine the sequential optimization technique (AB pruning) with parallel
optimization techniques in order to come up with a strategy that combines
both in an efficient manner.

4 Performance Evaluation

We will compare the solver’s performance in both sequential and parallel con-
figurations. Key metrics for evaluation will include the average time taken to
complete games, the maximum score achieved, and the number of games suc-
cessfully reaching the 2048 tile. Additionally, we will analyze the impact of
parallelism on computation time and resource utilization, particularly focusing
on how well the dynamic task allocation balances the workload across proces-
sors. The outcomes of this performance evaluation will help us decide the best
heuristics, optimize our algorithm, and ensure that our solver is both effective
in gameplay strategy and efficient in resource usage.

2


