
Lazy and Parallel Evaluation

Stephen A. Edwards

Columbia University

Fall 2023

Laziness
Forcing Evaluation with seq
Weak Head Normal Form

Parallelism
ThreadScope
Sparking Parallelism with par
Sparks
Limiting Granularity

This material adapted from

Simon Marlow’s book

https://simonmar.github.io/pages/pcph.html

Mary Sheeran and John Hughes’s class

http://www.cse.chalmers.se/edu/year/2018/
course/DAT280_Parallel_Functional_
Programming/lectures.html

https://simonmar.github.io/pages/pcph.html
http://www.cse.chalmers.se/edu/year/2018/course/DAT280_Parallel_Functional_Programming/lectures.html
http://www.cse.chalmers.se/edu/year/2018/course/DAT280_Parallel_Functional_Programming/lectures.html
http://www.cse.chalmers.se/edu/year/2018/course/DAT280_Parallel_Functional_Programming/lectures.html

Laziness in Haskell

Thunk Crood

Haskell follows a call-by-need† evaluation strategy
in which expressions are evaluated only when their
values are needed and at most once.

Prelude> let x = 1 + 2 :: Int
Prelude> :t x
x :: Int
Prelude> :sprint x
x = _
Prelude> x + 1
4
Prelude> :sprint x
x = 3

_ denotes an unevaluated “thunk” [Marlow, Figure 2–1]

†C, Java, etc. are call-by-value: arguments are evaluated before a function call;
Algol-68 is call-by-name: arguments are (re)evaluated at each reference

Thunks all the way down: seq also forces evaluation
seq :: a -> b -> b

seq x y = evaluate x and y; return y

Prelude> let x = 1 + 2 :: Int
Prelude> let y = x + 1
Prelude> :sprint x
x = _
Prelude> :sprint y
y = _
Prelude> seq y ()
()
Prelude> :sprint x
x = 3
Prelude> :sprint y
y = 4

[Marlow, Figure 2–2]

Weak Head Normal Form: Lazy Data Structrures
Prelude> let x = 1 + 2 :: Int
Prelude> let y = (x, x)
Prelude> let swap(a, b) = (b, a)
Prelude> let z = swap (x,x+1)
Prelude> :sprint z
z = _
Prelude> seq z ()
()
Prelude> :sprint z
z = (_,_)
Prelude> seq x ()
()
Prelude> :sprint z
z = (_,3)

[Marlow, Figure 2–3]

Weak head normal form: top is data constructor or lambda, not application

Functions Build Thunks
Prelude> let xs =

 map (+1) [1..10] :: [Int]
Prelude> :sprint xs
xs = _
Prelude> seq xs ()
()
Prelude> :sprint xs
xs = _ : _
Prelude> seq (tail xs) ()
()
Prelude> :sprint xs
xs = _ : _ : _
Prelude> length xs
10
Prelude> :sprint xs
xs = [_,_,_,_,_,_,_,_,_,_]

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = let x' = f x

 xs' = map f xs
 in x' : xs'

[Marlow, Figure 2–4]

Let’s Speed Up a Dumb† Program

nfib1 :: Integer -> Integer
nfib1 n | n < 2 = 1
nfib1 n = nfib1 (n-1) + nfib1 (n-2) + 1

main :: IO ()
main = print (nfib1 40)

n nfib n

10 177
20 21891
25 242785
30 2692537
35 29860703
40 331160281

$ stack ghc -- -O2 \ # Optimize
 -threaded \ # Enable parallel execution
 -rtsopts \ # Enable run−time system flags +RTS
 -eventlog \ # Enable parallel profiling
 nfib1.hs

†This should be iterative, not recursive

Running the Program

$ TIMEFORMAT="real %Rs" # for bash time builtin
$ time ./nfib1
331160281
real 9.984s
$ time ./nfib1 +RTS -N1 # +RTS = Run Time System, −N1 = 1 core
331160281
real 9.994s
$ time ./nfib1 +RTS -N4 # −N4 = use 4 cores
331160281
real 10.214s
$ time ./nfib1 +RTS -N4 -ls # −ls = Record events in nfib1.eventlog
331160281
real 10.378s

ThreadScope

ThreadScope: the Haskell parallel execution event log viewer

Under Ubuntu, I was able to install it using Aptitude:

$ sudo apt install threadscope

The Haskell stack may also be able to install it (stack install threadscope),
but it didn’t work automatically on my machine

A Haskell executable compiled with -rtsopts enables the +RTS ... -RTS syntax
for passing arguments to the Haskell runtime system

The -l option enables event logging (in a binary file executable.eventlog); s
includes scheduler events

Google “Haskell Runtime Control” or look in the GHC User Guide

Only One Thread: Pretty Boring

Asking for Parallelism

In Control.Parallel, (stack install parallel)

par : a -> b -> b

par x y “sparks” the evaluation of x in parallel with y; returns y.

The run-time system may convert a spark into work for a thread

import Control.Parallel(par)

nfib2 :: Integer -> Integer
nfib2 n | n < 2 = 1
nfib2 n = par nf (nf + nfib2 (n-2) + 1)

 where nf = nfib2 (n-1)

Performance of nfib2 (using par)

Time (s)

Threads
0 2 4 6 8

0

2

4

6

8

10

Ideal

$ time ./nfib2 +RTS -N8 -ls
331160281
real 2.604s

A speedup of 7.44: Pretty good for a first try

Sparks
par Request a spark

Overflow
Spark pool is full

Dud
Already evaluated

to WHNF Created
Enter spark pool

Garbage Collected
Program forgot about it

or computed it already

Fizzled
Evaluated to WHNF

after creation

Converted
Evaluated by an available core

From https://wiki.haskell.org/ThreadScope_Tour

$./nfib2 +RTS -N8 -s
331160281
SPARKS:
166651588 total

 1210 converted,
 47083668 overflowed,
 0 dud,

117359879 GC'd,
 2206831 fizzled

Conclusion: Far too many
sparks created; majority
were garbage collected;
25% didn’t even fit in the
spark pool. Only 1210
(0.0007%) did useful work.

https://wiki.haskell.org/ThreadScope_Tour

Asking more precisely for parallelism
Also in Control.Parallel,

pseq : a -> b -> b

Like seq, but only strict in its first argument. pseq x y means “make sure x is
evaluated before starting on y”

import Control.Parallel(par, pseq)

nfib3 :: Integer -> Integer
nfib3 n | n < 2 = 1
nfib3 n = nf1 ̀ par` nf2 ̀ pseq` nf1 + nf2 + 1

 where nf1 = nfib3 (n-1)
 nf2 = nfib3 (n-2)

No visible change in performance; the compiler may
have automatically done this for us

Time (s)

Threads
0 2 4 6 8

0

2

4

6

8

10

Ideal

nfib2
nfib3

Controlling Granularity

We are creating a lot of sparks, most of which are pointless:

./nfib3 +RTS -N8 -s
SPARKS: 168073361 (

 2351 converted,
 48159769 overflowed,
 0 dud,
 115072423 GC'd,
 4838818 fizzled)

It doesn’t make sense to be creating 168 million pieces of work when we only
have 8 cores on which to do work; only 2351 ever did useful work.

Idea: let’s go parallel only to a certain depth

Running Parallel to a Certain Depth

nfib4 :: Int -> Int -> Integer
nfib4 0 n = nfib n
nfib4 _ n | n < 2 = 1
nfib4 d n = nf1 ̀ par` nf2 ̀ pseq`

 nf1 + nf2 + 1
 where nf1 = nfib4 (d-1) (n-1)
 nf2 = nfib4 (d-1) (n-2)

nfib :: Int -> Integer
nfib n | n < 2 = 1
nfib n = nfib (n-1) +

 nfib (n-2) + 1

Speedup

Depth
0 2 4 6 8 10 12

0

2

4

6

8

Computing nfib4 40 on an 8-thread i7

Depth Sparks Time (s) Speedup

total converted GC’ed fizzled total elapsed

1 1 1 0 0 8.00 3.80 2.10
2 3 3 0 0 6.80 2.34 2.91
3 7 7 0 0 8.83 1.98 4.45
4 15 12 0 2 7.89 1.51 5.21
5 31 19 0 11 7.58 1.24 6.13
6 63 30 0 32 8.14 1.27 6.40
7 127 39 0 87 8.62 1.26 6.82
8 256 48 1 206 7.51 1.07 7.02
9 511 78 0 432 7.57 1.05 7.24

10 1026 98 4 923 7.53 1.03 7.32
11 2052 162 49 1840 7.33 0.98 7.51
12 4106 160 436 3509 7.04 0.93 7.58
13 8226 249 2109 5867 7.62 1.04 7.32

25 30833310 2855 28605093 398402 10.17 1.50 6.77

3.6 GHz 4-core, 8-thread i7-3820, +RTS -N8 -s, 4-run averages, -O2 -threaded -rtsopts

Depth = 1: Only two-way parallelism

Depth = 4: 16-way parallelism but unbalanced

Depth = 7: 32 sparks, better balancing

Depth = 12: 4000+ sparks, excellent balancing

	Laziness
	Forcing Evaluation with seq
	Weak Head Normal Form

	Parallelism
	ThreadScope
	Sparking Parallelism with par
	Sparks
	Limiting Granularity

