Functors and Friends

Stephen A. Edwards

Columbia University

$$
\text { Fall } 2023
$$

Functors
Functor Laws
Applicative Functors
Pure and the <\$> Operator
ZipList Applicative Functors
liftA2
sequence A
Applicative Functor Laws
newtype
Monoids
Foldable

Functors: Types That Hold a Type in a Box

class Functor f where

fmap :: (a -> b) -> f a -> f b
f is a type constructor of kind * -> *. "A box of"
fmap g x means "apply g to every a in the box x to produce a box of b's"

```
data Maybe a = Just a | Nothing
instance Functor Maybe where
data Either a b = Left a | Right b
instance Functor (Either a) where
fmap \(-(\) Left x) \(=\) Left \(x\)
fmap g (Right y) \(=\) Right (g y)
```

data List $\mathrm{a}=$ Cons a (List a) | Nil
instance Functor List where
fmap g (Cons x xs) = Cons (g x) (fmap g xs)
fmap _ Nil = Nil

IO as a Functor

Functor takes a type constructor of kind * -> *, which is the kind of $I O$

```
Prelude> :k IO
IO :: * -> *
```

IO does behave like a kind of box:

```
query :: IO String
query = do line <- getLine -- getLine returns a box :: IO String
    let res = line ++ "!" -- take line out of box from getLine
    return res -- put res in an IO box
```

The definition of Functor IO in the Prelude: (alternative syntax)

```
instance Functor IO where
    fmap f action = do result <- action -- take result from the box
        return (f result) -- apply f; put it a box
```


Using fmap with I/O Actions

```
main = do line <- getLine
    let revLine = reverse line -- Tedious but correct
    putStrLn revLine
```

main $=$ do revLine <- fmap reverse getLine -- More direct putStrLn revLine

Prelude> fmap (++"!") getLine
foo
"foo!"

Functions are Functors

```
Prelude> :k (->)
(->) :: * -> * -> * -- Like '` (+),' (->) is a function on types
```

That is, the function type constructor -> takes two concrete types and produces a third (a function). This is the same kind as Either

```
Prelude> :k ((->) Int)
((->) Int) :: * -> *
```

The ((->) Int) type constructor takes type a and produces functions that tranform Ints to a's. fmap will apply a function that transforms the a's to b's.

```
instance Functor ((->) a) where
    fmap f g = \x -> f (g x) -- Wait, this is just function composition!
```

```
instance Functor ((->) a) where
    fmap = (.) -- Much more succinct (Prelude definition)
```

Fmapping Functions: $\mathrm{fmap} \mathrm{f} g=\mathrm{f} . \mathrm{g}$

```
Prelude> :t fmap (*3) (+100)
fmap (*3) (+100) :: Num b => b -> b
Prelude> fmap (*3) (+100) 1
303
Prelude> (*3) `fmap` (+100) $ 1
303
Prelude> (*3) . (+100) $ 1
303
Prelude> fmap (show . (*3)) (+100) 1
"303"
```


Partially Applying fmap

```
Prelude> :t fmap
fmap :: Functor f => (a -> b) -> f a -> f b
```

Prelude> :t fmap (*3)
fmap (*3) :: (Functor f, Num b) => f b -> f b
"fmap $(* 3)$ " is a function that operates on functors of the Num type class ("functors over numbers"). The function ($* 3$) has been lifted to functors

```
Prelude> :t fmap (replicate 3)
fmap (replicate 3) :: Functor f => f a -> f [a]
```

"fmap (replicate 3)" is a function over functors that generates "boxed lists"

Functor Laws

Applying the identity function does not change the functor ("fmap does not change the box"):
fmap id = id

Applying fmap with two functions is like applying their composition ("applying functions to the box is like applying them in the box"):

$$
\text { fmap }(f . g)=\text { fmap } f . f m a p g
$$

```
fmap (\y -> f (g y)) x = fmap f (fmap g x) -- Equivalent
```

data Maybe a = Just a | Nothing
\{- Does Maybe follow the laws? - \}
instance Functor Maybe where fmap _ Nothing = Nothing fmap f (Just x) = Just (f x)
$(f m a p \mathrm{f} . \mathrm{fmap} \mathrm{g})($ Just x$)=\mathrm{fmap} \mathrm{f}(\mathrm{fmap} \mathrm{g}($ Just x$))--\operatorname{def}$ of.

$$
=\text { fmap } f \text { (Just }(\mathrm{g} \mathrm{x})) \quad--\operatorname{def} \text { of fmap }
$$

$$
=\text { Just }(f(g x)) \quad--\operatorname{def} \text { of fmap }
$$

$$
=\text { Just }((f . g) x) \quad-- \text { def of. }
$$

$$
=\text { fmap }(\mathrm{f} . \mathrm{g})(\text { Just } \mathrm{x}) \quad--\mathrm{def} \text { of fmap }
$$

$$
\begin{aligned}
& \text { fmap id Nothing }=\text { Nothing } \quad-\text { from the definition of fmap } \\
& \text { fmap id (Just } \mathrm{x} \text {) = Just (id } \mathrm{x} \text {) } \\
& =\text { Just } \mathrm{x} \\
& \text {-- from the definition of fmap } \\
& \text {-- from the definition of id } \\
& \text { (fmap f . fmap g) Nothing }=\text { fmap } f(f m a p ~ g ~ N o t h i n g) ~--~ d e f o f . ~ \\
& \text { = fmap } f \text { Nothing } \\
& \text {-- def of fmap } \\
& \text { = Nothing } \quad-- \text { def of fmap } \\
& \text { = fmap (f . g) Nothing -- def of fmap }
\end{aligned}
$$

My So-Called Functor

```
data CMaybe a = CNothing | CJust Int a
    deriving Show
instance Functor CMaybe where -- Purported
    fmap _ CNothing = CNothing
    fmap f (CJust c x) = CJust (c+1) (f x)
```

```
*Main> fmap id CNothing
CNothing -- OK: fmap id Nothing = id Nothing
*Main> fmap id (CJust 42 "Hello")
CJust 43 "Hello" -- FAIL: fmap id /= id because 43 /= 42
*Main> fmap ( (+1) . (+1) ) (CJust 42 100)
CJust 43 102
*Main> (fmap (+1) . fmap (+1)) (CJust 42 100)
CJust 44 102 -- FAIL: fmap (f.g)/= fmap f.fmap g because 43 /= 44
```


Multi-Argument Functions on Functors: Applicative Functors

Functions in Hakell are Curried:

$$
1+2=(+) 12=((+) 1) 2=(1+) 2=3
$$

What if we wanted to perform $1+2$ in a Functor?

```
class Functor f where
    fmap :: (a -> b) -> f a -> f b
```

fmap is "apply a normal function to a functor, producing a functor"
Say we want to add 1 to 2 in the [] Functor (lists):

$$
\begin{aligned}
{[1]+[2] } & =(+)[1][2] & & - \text { Infix to prefix } \\
& =(\text { fmap }(+)[1])[2] & & - \text { - fmap: apply function to functor } \\
& =[(1+)][2] & & - \text { Now what? }
\end{aligned}
$$

We want to apply a Functor containing functions to another functor, e.g., something with the signature [a -> b] -> [a] -> [b]

Applicative Functors: Applying Functions in a Functor

```
infixl 4 <*>
class Functor f => Applicative f where
    pure :: a -> f a -- Box something, e.g., a function
    (<*>) :: f (a -> b) -> f a -> f b -- Apply boxed function to a box
```

instance Applicative Maybe where
pure = Just -- Put it in a "Just" box
Nothing <*> _ = Nothing -- No function to apply
Just f <*> m fmap f m -- Apply function-in-a-box f

```
Prelude> :t fmap (+) (Just 1)
fmap (+) (Just 1) :: Num a => Maybe (a -> a) -- Function-in-a-box
Prelude> fmap (+) (Just 1) <*> (Just 2)
Just 3
Prelude> fmap (+) Nothing <*> (Just 2)
Nothing
-- Nothing is a buzzkiller
```


Pure and the $<\$>$ Operator

```
Prelude> pure (-) <*> Just 10 <*> Just 4
Just 6
Prelude> pure (10-) <*> Just 4
Just 6
Prelude> (-) `fmap` (Just 10) <*> Just 4
Just 6
```

<\$> is simply an infix fmap meant to remind you of the \$ operator

```
infixl 4 <$>
(<$>) :: Functor f => (a -> b) -> f a -> f b
f <$> x = fmap f x -- Or equivalently, f `fmap` x
```

So $f\langle \$\rangle x\langle *\rangle y<*>z$ is like $f x y z$ but on applicative functors x, y, z
Prelude> (+) <\$> [1] <*> [2]
[3]
Prelude> (,,) <\$> Just "PFP" <*> Just "Rocks" <*> Just "Out"
Just ("PFP","Rocks","Out")

Maybe as an Applicative Functor

```
instance Functor Maybe where
    fmap _ Nothing = Nothing
    fmap g (Just x) = Just (g x)
infixl 4 <$>
f <$> x = fmap f x
```

infixl 4 <*>
instance Applicative Maybe where
pure = Just
Nothing <*> _ = Nothing
Just f <*> m = fmap f m

```
    f <$> Just x <*> Just y
=( f <$> Just x ) <*> Just y -- a <$> b <*> c=(a<$> b)<*>c
= (fmap f (Just x)) <*> Just y -- Definition of <$>
=( Just (f x)) <*> Just y -- Definition of fmap Maybe
= fmap (f x) (Just y) -- Definition of <*>
= Just (f x y) -- Definition of fmap Maybe
```


Lists are Applicative Functors

```
instance Applicative [] where
    pure x = [x]
    fs <*> xs = [ f x | f <- fs, x <- xs ] -- All combinations
```

<*> associates (evaluates) left-to-right, so the last list is iterated over first:

```
Prelude> [ (++"!"), (++"?"), (++".") ] <*> [ "Run", "GHC" ]
["Run!","GHC!","Run?","GHC?",'Run.","GHC."]
Prelude> [ x+y | x <- [100,200,300], y <- [1..3] ]
[101,102,103,201,202,203,301,302,303]
Prelude> (+) <$> [100,200,300] <*> [1..3]
[101,102,103,201, 202, 203,301, 302,303]
Prelude> pure (+) <*> [100,200,300] <*> [1..3]
[101,102,103,201, 202, 203,301, 302, 303]
```


IO is an Applicative Functor

<*> enables I/O actions to be used more like functions

Function Application ((->) a) as an Applicative Functor

$$
\begin{aligned}
\text { pure } & :: \mathrm{b}->((->) \mathrm{a}) \mathrm{b} \\
& :: \mathrm{b}->\mathrm{a}->\mathrm{b} \\
(\langle *>) & ::((->) \mathrm{a})(\mathrm{b}->\mathrm{c})->((->) \mathrm{a}) \mathrm{b} \rightarrow((->) \mathrm{a}) \mathrm{c} \\
& ::(\mathrm{a}->\mathrm{b}->\mathrm{c})->(\mathrm{a}->\mathrm{b})->(\mathrm{a}->\mathrm{c})
\end{aligned}
$$

The "box" is "a function that takes an a and returns the type in the box" <*> takes $\mathrm{f}:: \mathrm{a}$-> b -> c and g : : a -> b and should produce a -> c.

Applying an argument $x::$ a to f and g gives $g x:: b$ and $f x:: b->c$. This means applying g to $f x$ gives c, i.e., $f x(g x):: c$.

```
instance Applicative ((->) a) where
    pure x = \_ -> x -- a.k.a., const
    f <*> g = \x -> f x (g x) -- Takes an a and uses f & g to produce a c
```

```
Prelude> :t \f g x -> f x (g x)
\f g x -> f x (g x) :: (a -> b -> c) -> (a -> b) -> a -> c
```


Functions as Applicative Functors

```
instance Applicative ((->) a) where f <*> g = \x -> f x (g x)
instance Functor ((->) a) where fmap = (.)
f <$> x = fmap f x
Prelude> :t (+) <$> (+3) <*> (*100)
(+) <$> (+3) <*> (*100) :: Num b => b -> b -- A function on numbers
Prelude> ( (+) <$> (+3) <*> (*100) ) 5
508 -- Apply 5 to +3, apply 5 to *100, and add the results
```

Single-argument functions (+3), (*100) are the boxes (arguments are "put inside"), which are assembled with (+) into a single-argument function.

Functions as Applicative Functors

Another example: („,) is the "build a 3-tuple operator"

```
Prelude> :t (,,) <$> (+3) <*> (*3) <*> (*100)
(,,) <$> (+3) <*> (*3) <*> (*100) :: Num a => a -> (a, a, a)
Prelude> ((,,) <$> (+3) <*> (*3) <*> (*100)) 2
(5,6,200)
```

The elements of the 3-tuple:
$2+3=5$
2 * $3=6$
2 * $100=200$
Each comes from applying 2 to the three functions.
"Generate a 3-tuple by applying the argument to (+3), (*3), and (*100)"

ZipList Applicative Functors

The usual implementation of Applicative Functors on lists generates all possible combinations:

```
Prelude> [(+),(*)] <*> [1,2] <*> [10,100]
[11,101,12,102,10,100, 20, 200]
```

Control.Applicative provides an alternative approach with zip-like behavior:

```
newtype ZipList a = ZipList { getZipList :: [a] }
instance Applicative ZipList where
    pure x = ZipList (repeat x) -- Infinite list of x's
    ZipList fs <*> ZipList xs = ZipList (zipWith (\f x -> f x) fs xs)
```

```
> ZipList [(+),(*)] <*> ZipList [1,2] <*> ZipList [10,100]
ZipList {getZipList = [11,200]} -- [1 + 10, 2 * 100]
> pure (,,) <*> ZipList [1,2] <*> ZipList [3,4] <*> ZipList [5,6]
ZipList {getZipList = [(1,3,5),(2,4,6)]}
```


liftA2: Lift a Two-Argument Function to an Applicative Functor

```
class Functor f => Applicative f where
    pure :: a -> f a
    (<*>) :: f (a -> b) -> f a -> f b
    (<*>) = liftA2 id -- Default: get function from 1st arg's box
```

 liftA2 : : (a -> b -> c) -> f a -> f b -> f c
 liftA2 \(\mathrm{f} x=(\langle *\rangle)\) (fmap f x) -- Default implementation
 liftA2 takes a binary function and "lifts" it to work on boxed values, e.g.,

```
liftA2 :: (a -> b -> c) -> (f a -> f b -> f c)
```

```
Prelude Control.Applicative> liftA2 (:) (Just 3) (Just [4])
Just [3,4] -- Apply (:) inside the boxes, i.e., Just ((:) 3 [4])
instance Applicative ZipList where
    pure x = ZipList (repeat x)
    liftA2 f (ZipList xs) (ZipList ys) = ZipList (zipWith f xs ys)
```


Turning a list of boxes into a box containing a list

```
sequenceA1 :: Applicative f => [f a] -> f [a] -- Prelude sequenceA
sequenceA1 [] = pure []
sequenceA1 (x:xs) = (:) <$> x <*> sequenceA1 xs
```

```
*Main> sequenceA1 [Just 3, Just 2, Just 1]
Just [3,2,1]
```

Recall that $f<\$>$ Just $x<*>$ Just $y=$ Just ($f x y$)

```
sequenceA1 [Just 3, Just 1]
= (:) <$> Just 3 <*> sequenceA1 [Just 1]
= (:) <$> Just 3 <*> ((:) <$> Just 1 <*> sequenceA1 [])
= (:) <$> Just 3 <*> ((:) <$> Just 1 <*> pure [])
= (:) <$> Just 3 <*> ((:) <$> Just 1 <*> Just [])
= (:) <$> Just 3 <*> Just [1]
= Just [3,1]
```


SequenceA Can Also Be Implemented With a Fold

import Control.Applicative (liftA2)

```
sequenceA2 :: Applicative f => [f a] -> f [a] -- Prelude sequenceA
sequenceA2 = foldr (liftA2 (:)) (pure [])
```

How do the types work out?

```
liftA2 :: App.f = (a b b ->c ) >f a }->\textrm{f
(:) :: a }\quad\mathrm{ [a] }->\mathrm{ [a]
```

Passing (:) to liftA2 makes $\mathrm{b}=$ [a] and $\mathrm{c}=$ [a], so
liftA2 (:) :: App. $\mathrm{f} \Rightarrow \quad \mathrm{f} a \rightarrow \mathrm{f}[\mathrm{a}] \rightarrow \mathrm{f}$ [a]
foldr :: $\quad(d \rightarrow e \rightarrow e) \rightarrow e \rightarrow[d] \rightarrow e$

Passing liftA2 (:) to foldr makes $d=f a$ and $e=f[a]$, so

foldr (liftA2 (:))	:: App.f \Rightarrow	$\mathrm{f}[\mathrm{a}] \rightarrow[\mathrm{fa}$] $\rightarrow \mathrm{f}$ [a]
pure [] :	App. $f \Rightarrow$	f [a]
foldr (liftA2 (:))	(pure []) :: App. $\mathrm{f} \Rightarrow$	$[f a] \rightarrow f[a]$

SequenceA in Action

sequenceA : : Applicative f => [f a] -> f [a]
sequenceA = foldr (liftA2 (:)) (pure [])
"Take the items from a list of boxes to make a box with a list of items"

```
Prelude> sequenceA [Just 3, Just 2, Just 1]
Just [3,2,1]
Prelude> sequenceA [Just 3, Nothing, Just 1]
Nothing -- ``Nothing' nullifies the result
Prelude> :t sequenceA [(+3), (+2), (+1)]
sequenceA [(+3), (+2), (+1)] :: Num a => a -> [a] -- Produces a list
Prelude> sequenceA [(+3), (+2), (+1)] 10
[13,12,11] -- Apply the argument to each function
Prelude> sequenceA [[1,2,3],[10,20]]
[[1,10],[1,20],[2,10],[2,20],[3,10],[3,20]] -- fmap on lists
```


Applicative Functor Laws

$$
\begin{aligned}
& \text { pure } f<*>x=\text { fmap } f x--<*>\text { : apply a boxed function } \\
& \text { pure id <*> x = x -- Because fmap id = id } \\
& \text { pure (.) <*> x <*> y <*> z = x <*> (y <*> z) --<*> is left-to-right } \\
& \text { pure } \mathrm{f}\langle *\rangle \text { pure } x=\text { pure (} \mathrm{f} x \text {) -- Apply a boxed function } \\
& \mathrm{x} \text { <*> pure } \mathrm{y}=\text { pure }(\$ \mathrm{y})<*>\mathrm{x}--(\$ \mathrm{y}) \text { : "apply arg. } \mathrm{y} "
\end{aligned}
$$

The newtype keyword: Build a New Type From an Existing Type

Say you want a version of an existing type only usable in certain contexts. type makes an alias with no restrictions. newtype is a more efficient version of data that only allows a single data constructor

```
newtype DegF = DegF { getDegF :: Double }
newtype DegC = DegC { getDegC :: Double }
fToC :: DegF -> DegC
fToC (DegF f) = DegC $ (f - 32) * 5 / 9
cToF :: DegC -> DegF
cToF (DegC c) = DegF $ (c * 9 / 5) + 32
```

instance Show DegF where show (DegF f) = show f ++ "F"
instance Show DegC where show (DegC c) = show c ++ "C"

DegF and DegC In Action

```
*Main> fToC (DegF 32)
0.0C
*Main> fToC (DegF 98.6)
37.0C
*Main> cToF (DegC 37)
98.6F
*Main> cToF 33
    * No instance for (Num DegC) arising from the literal '33'
*Main> DegC 33 + DegC 32
    * No instance for (Num DegC) arising from a use of '+'
*Main> let t1 = DegC 33
*Main| t2 = DegC 10 in
*Main| getDegC t1 + getDegC t2
4 3 . 0
```


Newtype vs. Data: Slightly Faster and Lazier

```
newtype DegF = DegF { getDegF :: Double }
data DegF = DegF { getDegF :: Double } -- Same syntax
```

A newtype may only have a single data constructor with a single field Compiler treats a newtype as the encapsulated type, so it's slightly faster Pattern matching always succeeds for a newtype:

```
Prelude> data DT = DT Bool
Prelude> newtype NT = NT Bool
Prelude> helloDT (DT _) = "hello"
Prelude> helloNT (NT _) = "hello"
Prelude> helloDT undefined
"*** Exception: Prelude.undefined
Prelude> helloNT undefined
"hello"
-- Just a Bool in NT's clothing
```


Data vs. Type vs. NewType

Keyword When to use

data When you need a completely new algebraic type or record, e.g., data MyTree $a=$ Node $a(M y T r e e ~ a) ~(M y T r e e ~ a) ~ \mid ~ L e a f ~$
type When you want a concise name for an existing type and aren't trying to restrict its use, e.g., type String = [Char]
newtype When you're trying to restrict the use of an existing type and were otherwise going to write data MyType = MyType t

Monoids

Type classes present a common interface to types that behave similarly A Monoid is a type with an associative binary operator and an identity value E.g., * and 1 on numbers, ++ and [] on lists:

```
Prelude> 4 * 1
4-- 1 is the identity on the right
Prelude> 1 * 4
4-- 1 is the identity on the left
Prelude> 2 * (3 * 4)
24
Prelude> (2 * 3) * 4
24 -- * is associative
Prelude> 2 * 3
6
Prelude> 3 * 2
6 -- * happens to be commutative
```

```
Prelude> "hello" ++ []
"hello" -- [] is the right identity
Prelude> [] ++ "hello"
"hello" -- [] is the left identity
Prelude> "a" ++ ("bc" ++ "de")
"abcde"
Prelude> ("a" ++ "bc") ++ "de"
"abcde" -- ++ is associative
Prelude> "a" ++ "b"
"ab"
Prelude> "b" ++ "a"
"ba" -- ++ is not commutative
```


The Monoid Type Class

```
class Monoid m where
    mempty :: a -- The identity value
    mappend :: m -> m -> m -- The associative binary operator
    mconcat :: [m] -> m -- Apply the binary operator to a list
    mconcat = foldr mappend mempty -- Default implementation
```

Lists are Monoids:

```
instance Monoid [a] where
    mempty = []
    mappend = (++)
```

```
Prelude> mempty :: [a]
[]
Prelude> "hello " `mappend` "world!"
"hello world!"
Prelude> mconcat ["hello ","pfp ","world!"]
"hello pfp world!"
```


*, 1 and +, 0 Can Each Make a Monoid

 newtype lets us build distinct Monoids for each In Data.Monoid,```
newtype Product a = Product { getProduct :: a }
 deriving (Eq, Ord, Read, Show, Bounded)
instance Num a => Monoid (Product a) where
 mempty = Product 1
 Product x `mappend` Product y = Product (x * y)
```

```
newtype Sum a = Sum { getSum :: a }
 deriving (Eq, Ord, Read, Show, Bounded)
```

instance Num a => Monoid (Sum a) where
mempty = Sum 0
Sum x `mappend` Sum $\mathrm{y}=\operatorname{Sum}(\mathrm{x}+\mathrm{y})$

## Product and Sum In Action

```
Prelude Data.Monoid> mempty :: Sum Int
Sum {getSum = 0}
Prelude Data.Monoid> mempty :: Product Int
Product {getProduct = 1}
Prelude Data.Monoid> Sum 3 `mappend` Sum 4
Sum {getSum = 7}
Prelude Data.Monoid> Product 3 `mappend` Product 4
Product {getProduct = 12}
Prelude Data.Monoid> mconcat [Sum 1, Sum 10, Sum 100]
Sum {getSum = 111}
Prelude Data.Monoid> mconcat [Product 10, Product 3, Product 5]
Product {getProduct = 150}
```


## The Any (||, False) and All (\&\&, True) Monoids

```
In Data.Monoid,
newtype Any = Any { getAny :: Bool }
 deriving (Eq, Ord, Read, Show, Bounded)
instance Monoid Any where
 mempty = Any False
 Any x `mappend` Any y = Any (x || y)
newtype All = All { getAll :: Bool }
 deriving (Eq, Ord, Read, Show, Bounded)
instance Monoid All where
 mempty = All True
 All x `mappend` All y = All (x && y)
```


## Any and All

```
Prelude Data.Monoid> mempty :: Any
Any {getAny = False}
Prelude Data.Monoid> mempty :: All
All {getAll = True}
Prelude Data.Monoid> getAny $ Any True `mappend` Any False
True
Prelude Data.Monoid> getAll $ All True `mappend` All False
False
Prelude Data.Monoid> mconcat [Any True, Any False, Any True]
Any {getAny = True}
Prelude Data.Monoid> mconcat [All True, All True, All False]
All {getAll = False}
```

Yes, any and all are easier to use

## Ordering as a Monoid

## data Ordering = LT | EQ | GT

In Data.Monoid,

```
instance Monoid Ordering where
 mempty = EQ
 LT `mappend` _ = LT
 EQ `mappend` y = y
 GT `mappend` _ = GT
```

Application: an /comp for strings ordered by length then alphabetically, e.g.,

```
lcomp :: String -> String -> Ordering
"b" `lcomp` "aaaa" = LT -- b is shorter
"bbbbb" `lcomp` "a" = GT -- bbbbb is longer
"avenger" `lcomp` "avenged" = LT -- Same length: r is after d
```


## Icomp

```
lcomp :: String -> String -> Ordering
lcomp x y = case length x `compare` length y of
 LT -> LT
 GT -> GT
 EQ -> x `compare` y
```

A little too operational; mappend is exactly what we want

```
lcomp :: String -> String -> Ordering
lcomp x y = (length x `compare` length y) `mappend`
 (x `compare` y)
```


## Maybe the Monoid

```
instance Monoid a => Monoid (Maybe a) where
 mempty = Nothing
 Nothing `mappend` m = m
 m `mappend` Nothing = m
 Just m1 `mappend` Just m2 = Just (m1 `mappend` m2)
```

```
Prelude> Nothing `mappend` Just "pfp"
Just "pfp"
Prelude> Just "fun" `mappend` Nothing
Just "fun"
Prelude> :m +Data.Monoid
Prelude Data.Monoid> Just (Sum 3) `mappend` Just (Sum 4)
Just (Sum {getSum = 7})
```


## The Foldable Type Class

What I taught you:

```
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr _ a [] = a
foldr f a (x:xs) = f x (foldr f a xs)
```

How it's actually defined (Data.Foldable):

$$
\text { foldr : : Foldable t => (a -> b -> b) -> b } \rightarrow \text { t a }->\text { b }
$$

```
class Foldable t where
 {-# MINIMAL foldMap | foldr #-}
 foldr, foldr' :: (a -> b -> b) -> b -> t a -> b
 foldr1 :: (a -> a -> a) -> t a -> a
 foldl, foldl' :: (b -> a -> b) -> b -> t a -> b
 foldl1 :: (a -> a -> a) -> t a -> a
 fold :: Monoid m => t m -> m
 :: Monoid m => (a -> m) -> t a -> m
 toList
 :: t a -> [a]
 null
 :: t a -> Bool
 length
 elem
 maximum
 minimum
 sum
 product
 :: t a -> Int
 :: Ord a => t a -> a
 :: Num a => t a -> a
 :: Num a => t a -> a
```

Instance of Foldable for [] is just the usual list functions
data Tree $a=$ Node $a(T r e e ~ a) ~(T r e e ~ a) ~ \mid ~ N i l ~ d e r i v i n g ~(E q, ~ R e a d) ~$

```
instance Foldable Tree where
 foldMap _ Nil = mempty
 foldMap f (Node x l r) = foldMap f l `mappend`
 f x `mappend`
 foldMap f r
```

> foldl (+) 0 (fromList [5,3,1,2,4,6,7] :: Tree Int)
28
-- folding the tree
> getSum \$ foldMap Sum \$ fromList [5,3,1,2,4,6,7]
28 -- The Sum Monoid's mappend is +
> getAny \$ foldMap ( $\backslash \mathrm{x}$-> Any $\$ \mathrm{x}==$ 'w') \$ fromList "brown"
True -- Any's mappend is ||
> getAny \$ foldMap (Any . (=='w')) \$ fromList "brown"
True -- More concise
> foldMap ( $\backslash \mathrm{x}$-> [x]) \$ fromList [5,3,1,2,4,6,7]
$[1,2,3,4,5,6,7] \quad$-- List's mappend is ++

