Final Report - ZyloZinger

Sienna Brent - scb2197
Alex Yu - asy2126
Riona Westphal - raw2183
Rajat Tyagi - rt2872

LyloZinger

The only videogame with a real
Xylophone as the controlier.

TOC

Project Overview
System Design and Components
Hardware
3.1. Audio
3.1.1. Design goals
3.1.2. Audio CODEC Interface
3.1.3. Audio Collection and Verification
3.1.4. Goertzel Algorithm
3.1.5. Detector Algorithm
3.2. Video
3.2.1. Sprite Generation
3.2.2. Line Buffers
3.2.3. Color Decoder
Software
4.1. User Space Game
Hardware-Software Interfacing
5.1. Register Map
5.2. Diriver files
5.2.1. Aud
5.2.2. Vga_zylo
Closing Thoughts
6.1. Potential Future Work
Sources

Appendix: Code Listing

0 N o oo oo a0 A M B bW

10
10
11
11
12
12
12
12
12
14
14

1 Project Overview

Zylo Zinger is a device that uses a microphone connected to the FPGA through the
mic-in port to recognize four distinct tones being played on an external instrument. Attached to it
is a videogame that utilizes sprite display to perform a guitar hero style rhythm game. The
incoming audio will be used in a video game simulation on the VGA display to earn “points” for
the user if the correct notes are played at the correct time. Thus it is similar in spirit to guitar
hero, trombone champ, or even DDR. However, unlike those games listed, the game does not
provide the music to play a beat to, but rather visually shows a beat and music prompts for the
player to play. Simply put, if the player is bad, the sound is bad, if the player is skilled, the sound
is good. The project has significant memory savings by utilizing sprite graphics and uses line
buffers instead of full frame buffers when drawing the image.

The video display will show falling objects that represent the note the game wishes for
the player to play on their instrument. In our case, it is a baby xylophone piano combo toy. The
toy covers a range of notes from high g7 to g8, thus the product was inaccurately named and
should be called a baby glockenspiel piano in consideration of its significantly higher pitch.

The game is played on the toy and the microphone picks up audio generated by the toy.
The role of the FPGA is to be both a signal processing device, process the game logic in
hardware, and to support vga sprite graphics for the game display.

2 System Design and Components

Hardware i Software
. Wolfson Audio ! . .
Microphone . Audio Driver
WM8731 Module Audio ID data

User Input Analog to ;
4-8 16-24 bit !
potential PCM digital Detector |
Goertzel || Goertzel || Goertzel || Goertzel ;

VGA Display VGA module g|§play Game Logic

Sprite location data nver

Sprite IDI data
[Random note generation
Logic for “score”
Logic for “combo”
Logic for note comparison

Palette Decoder

|

Sprite Bitmaps
|

ROM ROM |===«| ROM

The basis of the project is a pitch recognition machine with a visual feedback display
based on the outputs of the pitch recognition. At a high level, this translates to a hardware ->
software -> hardware design, in which audio data is gathered in hardware, sent on an Avalon
bus to the software in the “readdata” signal, which is then used to update the graphics data.
Finally, graphics data is sent back on another Avalon bus on the “writedata” signal. The two
hardware components were controlled using separate device driver modules.

3 Hardware

3.1 Audio
3.1.1 Design goals
e Output 4 bits of data
e Always available result

e Can differentiate between a played note and silence

e Sample audio at 48khz

Audio detection was done in two parts. First is to receive analog data from the
microphone into the audio Codec chip and return a 24 bit PCM digital data stream. The second
part was to use this data stream and identify if the target frequencies created by the physical
children’s toy piano xylophone were there. For reference, 48khz is the Nyquist frequency of the
human ear. For those unfamiliar with signal processing, the Nyquist frequency is the minimum
frequency required to discreetly sample data points of an analog signal to replicate it perfectly
without losing data at half the playback frequency.

3.1.2 Audio CODEC Interface

The audio CODEC is typically configured using the 12C bus. Because our team was on a
faster pace deadline, we opted to use a prepackaged audio CODEC interface driver [1] from
Altera which was customized by Professor Scott Hauck at Washington University and used
previously by the 2019 TNShazam project. The outputs of the top-level file from this library were
adc_right_out and adc_left_out, which we turned into a signal stream with audiolnMono =
(adc_right_out>>1) + (adc_left_out>>1). The readout from hardware was stored in a set of
registers called buffer. Buffer would change to BRAM output from the tone detector output
based on how it is configured, an option sent by software. By default, it reads from the tone
detector.

3.1.3 Audio Collection and Verification

To collect audio, we used a Sennheiser MKE 200 directional microphone plugged into a
3.5mm cord into the audio in port on the FPGA board. Much of the early stages of the project
was to ensure that the data received by the microphone and output by the audio codec chip was
what we expected. To check for this, a BRAM module was created to store 65536 24bit words of
alleged 24 bit pulse code modulated audio data and a userspace program would read from this
BRAM and write its contents to a .txt file which the team could then read and extract from the
board for later analysis and playback on non-FPGA devices. The final audio.sv file still has the
BRAM instantiated and a write to and read from procedure still exists in the device driver aud.c
and aud.h files.

Their function is to have a userspace program to send a desired amount of samples for the
hardware to store and then once done storing, allow for software to read from BRAM in order to
have properly time stamped samples. The BRAM module used was the two port BRAM shown
in Professor Edward’s memory lecture slides.

The primary reason for using this approach instead of directly sending the output of the

Wolfson-WM8731-audio-CODEC was because there was no way for software to tell if the data
read skipped any samples or reread the same sample or not. By utilizing BRAM in this way, the
team ensured that each audio sample was read only once and each and every one was stored

in BRAM for the number of samples desired. The use case was not just a simple FIFO, software
could request data from any specified address but in this case it basically was a FIFO.

Once a txt file of a single second worth of audio data sampled at 48khz was created, it could be
analyzed with external software like MATLAB and Audacity where we could perform things like
spectrum peak analysis and come up with methods for filtering..

3.1.4 Goertzel Algorithm

Primarily, the ZyloZinger relies on the Goertzel single tone-detection algorithm [2]. This
algorithm takes in 1024 samples at a sampling rate of 48kHz and produces a single-bin DFT
output. A 2-tap IIR feedback calculation is performed for every incoming signal, and after 1024
signals have been processed a single feed-forward, FIR-like calculation is performed. The
output of this complex feed-forward calculation is the amplitude of a single given spectral
component.

In order for these calculations to be feasibly performed by an FPGA at the speed we
needed, we made two major adjustments: First, we hardcoded the coefficient that was required
for the feedback calculations. Second, we modified the Goertzel algorithm to output the power
present within a single given spectral component, instead of the amplitude. To achieve this, the
entire equation must be squared and as a result, the complex component of the feed-forward
calculation is removed.

The Goertzel algorithm was implemented in our program by instantiating four “Goertzel”
modules in the top-level audio module, each one differentiated by a different coefficient
parameter which corresponded to a different spectral component’s bin number. The incoming
signal stream from the CODEC feeds into all four instantiations, and four power outputs are
being updated every 1024 incoming signals.

3.1.5 Detector Algorithm

The detector algorithm works by taking in the four power outputs from the four Goertzel
modules, and comparing them in order to output an “overall result” that would ultimately be sent
to hardware. This comparison works by instantiating several “ratio” variables, one for each
combination of powers. For example, the ratio_12 variable represents the power detected at
Goertzel_1 divided by the power detected at Goertzel_2. Additionally, a set of latches is
instantiated which function as a FIFO queue.

When each set of 4 new results come into the detector from the Goertzels, the counter
increments by one and the ratio variables are checked to determine which Goertzel, of any, had
the power with the largest magnitude. If none of the ratio variables are sufficiently high, our
detector reads this as silence. This new result, the number of the Goertzel with the largest
power magnitude (or silence), gets input to our “queue”, and the oldest result of the queue is
discarded.

When the counter reaches a preset value (defined as 'INTERVAL) equal to the number
of latches in the queue, a simple summing calculation is done on the members of the queue to

determine which Goertzel’'s power had the largest magnitude the most often. This “overall result
is sent back to the top-level audio module.

3.2 Video

3.2.1 Sprite Generation

To achieve the desired display, the “background was first drawn statically using the
positions of hcount and vcount from the vga_counters module. The features drawn with this
technique include the green “valid” region, the shades of blue in the background, the black
rectangle of the menu, and the vertical lines down the display. For everything else, including the
noteblocks, letters, and numbers, sprite graphics were used.

Using three smaller BRAM modules to store 64 x and y coordinates, and sprite names, it
is essentially the sprite attribute table where each sprite is the address to the BRAMs. Thus to
call on a sprite, the system checks for the sprite index or address and from these BRAM
modules find their appropriate information. The x and y coordinates where both 10x64 bits and
the ids were 4x64 bits. This means our system could support the storage of up to 64 individual
active sprites on the screen.

The system does not generate sprites in layers but rather checks if a sprite is in the
raster line sequentially by their index from least to greatest. This means that if a higher indexed
sprite will overwrite a lower indexed sprite should they share the same coordinates. It should be
noted that while this feature exists, our final design and game logic never has a case of
overlapping sprites.

@ ruplerighteng

We created custom sprites by drawing the pixel art for them in a 32x32 pixel space. They
were stored as .ng files and we used a python script to parse through the files to generate a .txt
file containing the color information of each pixel in an array. These .txt files would be read with
the $readmemh function during “make quartus” to create ROM modules preloaded with these
pixel maps. This technique was taken from [3]. Larger sprites, such as the noteblocks, were
represented with multiple 32x32 sprites adjacent to each other.

3.2.2 Line Buffers

Sprites y ROM
Sprite Index
Sprites x ROM
id ROM 4 bit Pixel info
Sprites id
\ hcount - x |
hcount -

||

/\ veount -y |
vcount

N

ROM

To have the four note blocks fall from the top of the screen to the bottom smoothly
without jitter, sprite mapping needed to be on a high resolution frame buffer. However, a full
frame buffer for 4 bit pixels would take up 1228800 bits each. While it was probably possible to
fit it fully for 2 or 3 frame buffers, a simpler solution of using alternating line buffers was found,
also at [3], and used.

The two line buffers each were tri-state state machines: during each raster line, line
buffer was being written to while the other prints its contents to the screen by being read to
VGA_R, VGA_G, and VGA_B. The line buffers were 640*4 register arrays so they could
efficiently flush and draw the background in a single clock cycle instead of using multiple sprite
layers. Thus technically, the overall system was a 4-state state machine.

There are 1600 clock cycles per line drawn. So in those 1600 cycles, the state machine
looks up into the 3 BRAM modules containing sprite x and y coordinates and id based on the
index which went into the address of these memory modules. This information is used to check
if the sprite was on the line and if it was, over the next 32 clock cycles, to draw its matching line
pixel by pixel in the current line buffer: the one not being printed to the screen. The sprite’s
pixelmap information is held in ROM memory modules, one for each sprite. These are looked up
using the sprite ID and read from in order to write to the line buffer. It then cycles to the next
sprite index to repeat the process until the next line is reached. The limitation to this

implementation is that if there were more than 45 sprites present in any given line, then there
would not be enough clock cycles to finish drawing them all in the line drawing phase of the
buffer. Luckily, our use case did not call for that many sprites to be present in the same line.

Functionally, the 3 xy and id BRAM modules act as the sprite attribute table and the
index is the sprite drawn.

3.2.3 Color decoding

4 bit buf_e color code

24 bit RGB hex value

Color Decoder

4 bit buf_o color code

vcount[0]

By storing color in each sprite ROM and line buffer as only 4 bits instead of the full 24,
memory usage was effectively reduced by nearly a factor of 6. The decoder is a simple mux. It
takes in the 4 bit color code as a selector and outputs a color RGB value based on that. The
color decoder in vga_zylo takes in two 4 bit color inputs from both the even line line buffer and
odd line line buffer and choses which one to read based on the selector bit vcount[0] indicating if
the vga screen is currently drawing a even or odd numbered line.

4 Software

4.1 User Space Game

Like the well known IP Guitar Hero, our game is played by striking the correct keys at the
correct times. When to strike is visually related to the player with falling “notes” as we call them.
The notes travel down the screen at a fixed speed allowing the player to anticipate and know
when to strike the corresponding note once it reaches the green section of the screen. Strike
when the note is in the green because green is for good and blue is for bad. Each correct note
will result in a point, potentially boosted by the current combo count- the number of correctly hit

notes striked in a row. Three values, “score”, “combo”, and overall maximum combo abbreviated
to “max” are kept track of.

To go about achieving this, a number of things needed to be done.

e Refresh screen function for new game
e Create an array of sprite structs containing x, y, dx, dy, id, hit status

10

Score, combo, and max combo counter
Check of sprites in the valid region
Update sprite x and y based on dx and dy

These functions were relatively simple to implement. The way software kept track of
sprites and sprite positions was to create sprite structs that contained a set of ints representing
their x and y positions, dy- a constant 1 or 0, dx- O unless struck to fly off screen, id- to tell
hardware if the sprite is a letter, number, or note component, and hit status- which is relevant to
check if this is a note to be checked for a match with the audio input or not.

At the start of a new game, when the program is called to run, all sprite objects are
refreshed to a default state. The first 22 sprites are reserved for SCORE, 3 score digits,
COMBO, 3 combo digits, MAX, and 3 max combo digits. The rest of the available sprite indexes
are to represent note blocks. During the refresh all these 22 sprites are set to predefined
positions and never moved again. The 9 sprites representing the digits however can swap sprite
ids to show different numbers on the screen.

In every game cycle thereafter, all notes are programmed to increase their y-coordinate
by one (visually represented as the noteblocks falling down the screen). All of the letters do not
update their positions or IDs at all. But while the update for the noteblock and letter sprites is
relatively simple, additional logic is required in order to update the number sprites for SCORE,
MAX, and COMBO appropriately.

Every game cycle, a function runs that searches through the array of sprite structs for
the y-coordinates of all sprites with an ID matching that of one of the four noteblocks. If any of
these y-coordinates are within a certain range (visualized on the screen as a green strip), the
software begins reading the data coming in on the readdata attribute of the Avalon bus (it
should be noted that this data is always being delivered to software regardless of game state,
but that the software only chooses to read it at specific conditions as determined by game logic).
If the value that's read matches the value of the sprite ID with the y-coordinate in the valid
region, a “hit” counter is incremented by one. If this hit counter reaches eight (though this is a
number we picked based on qualitative testing of the game’s sensitivity), the note is counted as
being hit.

When a note is hit, several things happen: first, SCORE is incremented by keeping the
same position but switching the sprite IDs at that position. Normally, this is a simple increment
by one, but depending on the magnitude of COMBO it may be more. For every 5 points of your
combo score, the score delta is increased by an extra point. For example, if you have a combo
of 17, you may expect your score to be increased by 1 + 3 = 4 points total.

COMBO can be updated on one of two conditions. Either a note is hit, or the
y-coordinate of a note becomes equal to the y-coordinate of the first non-valid pixel (i.e. the first
blue row on the display). A “combo flag” variable, either 0 or 1, helps us keep track of whether
the last noteblock was also hit or not. If the current note has been hit according to the above
logic and the combo flag is raised, combo is incremented by one and the flag remains raised.

11

However if the note was not hit, i.e. it left the valid region without a positive detection, the combo
flag goes to zero and COMBO is updated to be zero as well.

The logic for MAX is extremely simple: each game cycle, MAX compares its value to
COMBO, and if COMBO > MAX then MAX will update its value to be equal to that of COMBO.
Else, MAX retains its old value.

When all the sprites have been updated according to this logic, the data for each sprite
struct in the array is packaged into a simple 32-bit array to be sent to the hardware. The first 6
bits of each 32-bit element of the packaged array represent the index, the next 6 represent the
ID, the next 10 are for the y-coordinate and the final 10 are for the x-coordinate.

5 Software Hardware Interfacing

5.1 Register Map

Bits

Address 31‘30‘29‘28’27|26‘251Z4‘23’22

21

20‘ 19‘ 18‘ 17

16

15‘ 14

13

12’ 11

10

9‘ 8‘ 7‘ 6‘ 5‘ 4| 3‘ 2‘ 1\ 0|Remarks

0 buffer data (BRAM audio data or Goertzel detector result) read hardware data

1 BRAM write cell limit write configuration
>,
4
2 BRAM read address write address to read from
3 I ‘ ‘ I | I ‘ ‘ | ‘ ‘ ‘ legacy/scrapped
4 Combo value Score value write
R\
o> [T TP LTI R LT R LT T LT Jromseme
Ry

6 sprite index sprite 1D sprite y-cord sprite x-cord write sprite data

5.2 Driver files

Hardware and software communicated with each other using the Avalon bus. Our device drivers
were functionally the same as they were when used in vga_ball lab except a single ioread
function used by aud.c.

5.2.1 aud

The aud.c driver both read and wrote to the board. In the early stages of the project,
there was a need to store and extract audio data from the microphone without losing samples.
The solution is mentioned above but to put it simply, audio data was written into a specified
number of BRAM cells and read back by software at its own pace. Thus because the readback
is controlled by software and the write is controlled by hardware, there is no risk of losing data
because the two cannot be synchronized.

Even though the software is sending ints, only the least significant 16 bits were read by
hardware as the BRAM created only held OxFFFF addresses. It could have held more but this

12

much was enough for the purpose of frequency spectrum peak analysis to formulate the
parameters needed by the Goertzel modules.

Three 10 functions were made, read_memory() to read from BRAM at its current read
address, write_limit() to tell the board that it wished to store audio data into BRAM a specific
number of cells, and write_address() to set the BRAM write address. The read_memory()
function does not necessarily read from memory but rather from the readdata port of the Avalon
bus; the name is from back when the module and driver only read from BRAM.

5.2.2 vga_zylo

The vga_zylo.c driver handled sending sprite data. However, to simplify the role of
hardware, score and combo sprite positions were handled in software rendering addresses 4
and 5 unused. It was originally anticipated that it was necessary to keep an address open for
each sprite we wished to render but we later realized that by keeping an array in a struct and
looping the call to write sprite data for each sprite was more code efficient. In vga_zylo.c the
function is called write_packet() because it writes a packet of sprite data to hardwares writedata
port.

6 Closing Thoughts

6.1 Potential future work

There was some disappointment in that we did not implement a complete video game
with a user interface beyond the gameplay itself. It also is not very much extra work to allow for
the game to read from a predetermined list of notes and rests but the idea of needing to
transpose actual music into our game note by note seemed like a ton of work that no one had
the time or patience to do with the limited amount of time we had to work.

It would also not have been difficult to implement four more Goertzel algorithms such
that each key of the piano would be able to have been detected. Initially, we were planning on
shrinking the size of the FFT from which the Goertzel modules were subsampling, from
1024-point to 512-point, to allow for a greater margin of error in the tone detection. With a
512-point FFT, the tones of all 8 keys on the piano became too close together to separate into
distinct spectral components, and for this reason we stuck to four. However, because ultimately
our algorithm did not need the extra room for error, we stuck to 1024-point and only have four
keys still as a result of lack of time.

13

7 Sources

[1] Huack, Scott, and Kyle Gagner. “Audio Tutorial - Class.ece.uw.edu.” UW Electrical &
Computer Engineering, University of Washington, 18 May 2015,
https://class.ece.uw.edu/271/hauck2/de1/audio/Audio_Tutorial.pdf.

[2] Staff, Embedded. “The Goertzel Algorithm.” Embedded.Com, 9 Nov. 2022,
www.embedded.com/the-goertzel-algorithm/.

[3] Green, Will. “Hardware Sprites.” Project F, 26 Mar. 2023,
https://projectf.io/posts/hardware-sprites/.

8 Appendix: Code Listing

All code and peripheral files can be found on https://github.com/lerntuspel/ZyloZinger.qit

14

