Snake Game on DE1-SOC Board

Final Report
CSEE 4840 Embedded System Design - Spring 2023

Project members:

Yue Rao(yr2425)
Tao Yan(ty2481)
Yuyang Wang(yw3912)
Jiawen Liu(jl6337)

Yuheng Zhang(yz4398)

Table of Contents
1.Introduction

2.System Architecture

3. Software Logic
3.1 Game Basics
3.2 Game Object
3.2.1 Food ltem
3.2.2 Snake
3.3 Collision Detection
3.4 Logitech F310 Wired Gamepad Controller reading handling
3.5 Game Speed Adjustment
3.6 Background Music and Sound Effects
3.7 Game State Management
3.8 Hardware-Software Interface

4. Hardware design
4.1VGA display
4.1.1 Screenshots of the game
4.2 Logitech F310 Wired Gamepad Controller
4.3 Snake Game Audio Implementation
4.4 Resource Budgets

5. Hardware-Software Interface
6. Challenges

7. Future Works
7.1 Optimization of Game Performance
7.2 Audio

8. Contribution

9. Software code
9.1 final.c
9.2 vga_ball.c
9.3 vga_ball.h
10. Hardware Code

1. Introduction

The Snake game is a timeless and engaging video game that has enthralled players for
generations. First introduced in the late 1970s, the game skyrocketed in popularity on
early home computers and Nokia mobile phones in the 1990s. The game features a
snake that navigates the screen, consuming food items while avoiding collisions with its
ever-growing body and the boundaries of the play area. As the snake devours food, its
length increases, progressively ramping up the challenge. For our embedded systems
course, we aim to recreate the Snake game on the DE1-SoC board. Equipped with a
plethora of interfaces and peripherals, the DE1-SoC board is an ideal platform for this
project. Our goal is to design a game that closely mirrors the original Snake game
experience. To this end, we have implemented several key elements of the classic
1990s Snake game, which include:

1. The Snake: The central character of the game, the snake, starts with a short
length and grows longer with each food item it consumes. The player's objective
is to grow the snake as long as possible while avoiding obstacles.

2. Food Items: Randomly appearing on the screen, food items are essential for the
snake's growth and increasing the player's score. Each time the snake eats a
food item, its length increases, and the score goes up.

3. Movement Controls: Typically, Snake utilizes four directional keys (up, down, left,
and right) to control the snake's movement.

4. Walls: The playing area is limited by Walls, and the snake must not collide with
these Walls.

5. Snake's Body: As the snake grows, the player must avoid running into its body. A
collision with the snake's own body results in a game over.

6. Speed: The snake's movement speed increases as it grows, raising the difficulty
level and demanding faster reactions from the player.

7. Scoring System: The player's score increases as the snake consumes food
items, with each item typically worth a set number of points.

8. Background music: Adding background music to the Snake game on the
DE1-SoC board is an interesting feature that enhances the gaming experience.

We use the Logitech F310 Wired Gamepad Controller to control the snake and a VGA
monitor to display the game.

Figure 1: Logitech F310 Wired Gamepad Controller

| 8 n O oeetronics

Figure 2: vga monitor

2. System Block Diagram

Snake Game combines both hardware and software design. The software parts contain
the device driver and game logic unit. The device driver provides an interface between
hardware (audio generator, Logitech F310 Wired Gamepad Controller, and VGA
monitor) data ports and logic control unit. The game logic includes object position
display, collision detection, score tracking, recording, and food generation. The
hardware section mainly contains the design of the VGA image display module,
Logitech F310 Wired Gamepad Controller module, and audio generation module.
Specifically, the Game logic unit sends each object’s position and status data to
hardware through device drivers. The hardware peripherals receive data from drivers,
they decode the data and display the corresponding images or sound effects. On the
other hand, the game logic unit receives the Logitech F310 Wired Gamepad Controller
reading data from the hardware to update the player’s position. The overall flowchart
can be shown as follows:

Hardware apple, snake, score

r

Vga_snake 12C

A L audio %’[speaker }

Sounds control
Game sound track

[Avalon Bus >
A

Software Drivers Game logic

main() Controller
set_pos()
snake location

k
snake status apple_regen()

game status
hit_body()

score refresh
get direction(

il

Figure 3: System Block Diagram

3. Software Logic

The game logic for the Snake game on the DE1-SoC board has been implemented
using the C programming language, with communication between the software and
hardware facilitated through device drivers. The software structure builds on the
foundation provided in Lab3. The file “'vga_ball.c’ and ‘final.c’ contains all the device
driver functions required for communication with the hardware. The "vga_ball.h" header
file defines the data types that are sent to the hardware. The primary game logic resides
in the “final.c™ file, which calls the device driver functions to transmit data to the
hardware. In this section, we will delve into the game logic and explain its gameplay.

3.1 Game Basics

The software logic for the Snake game manages the overall game flow, encompassing
game state initialization, user input handling, game object management, game state
updates in response to various events, and game state rendering on the display. The
game loop is the central component of the software logic, running continuously until the
game is terminated. During each iteration of the loop, the game state is updated and
rendered based on the elapsed time since the previous frame, ensuring smooth and
consistent gameplay.

3.2 Game Objects
The primary game objects in the Snake game are the snake and the food item.

3.2.1 Food item (Apple)

The food item object is generated at random locations on the game grid. To ensure that
it does not overlap with the snake or the boundaries, a function is implemented that
checks the proposed food item location against the snake's coordinates and the grid
boundaries. If the location is suitable, the food item is placed there. When the snake's
head collides with the food item, the snake's length is increased by adding a new
segment to the tail, the food item is eaten by the snake, and a new food item is
generated at another random location.

Figure 4: Apple

3.2.2 Snake

The snake object consists of a series of segments, each represented by a coordinate
pair (X, y) on the game grid. We employed an array of specific data structures written by
ourselves to store the snake's segments. The snake's head moves in the direction
dictated by user input, with the body segments following the position of the previous
segment. This can be achieved by updating the head's coordinates based on the
current direction and then shifting the rest of the body segments accordingly. The
snake's movement is refreshed at regular intervals, determined by the game's speed,
which can be modulated using a game clock mechanism.

Figure 5: Snake
3.3 Collision Detection
The software logic checks for collisions between the snake's head and its body
segments or the boundaries of the playing area. This is done by comparing the
coordinates of the snake's head with the coordinates of each body segment and the grid
boundaries. If a collision is detected, the game state is updated to reflect the game-over
condition, and the player is prompted to restart or quit the game. This may involve
displaying a game over screen, showing the score during the entire game session.

Figure 6: Snake Collision

3.4 Logitech F310 Wired Gamepad Controller reading handling

By mapping the controller's buttons to the corresponding directional inputs, the
controller can be used to control the snake's movement in the game. The software logic
includes a function and interrupt service routine to read the controller input via USB and
update the snake's direction accordingly. Proper handling of the controller input involves
debouncing, which ensures that only single input events are registered even if the user
holds down or quickly presses a button multiple times. This contributes to smooth and
responsive gameplay.

3.5 Game Speed Adjustment

Players can choose their own speed by first pressing the “start” button to pause the
game, and then change the game speed by pressing the “X”, “Y”, “B”, and “A” buttons,
in an increasing order of speed, respectively. Finally, press the “start” button again to
resume the game with the speed newly set.

3.6 Background Music and Sound Effects

The software logic manages the playback of background music and sound effects
during the game. This includes loading the audio files into memory, initializing and
configuring the audio playback module, and controlling the playback in response to
game events. For example, the background music loop seamlessly throughout the
game, while sound effects should be played when the snake consumes food, collides
with its body, or encounters the boundaries of the playing area.

3.7 Game State Management

Our software logic is designed to handle various game states, such as snake position,
game speed, pause status, score, etc. Each game state is represented by a specific
data structure/type, with transitions between states triggered by user input or game
events. The main game loop should be designed to accommodate these state
transitions, ensuring that the game state is updated and rendered correctly for the
current state. For example, during gameplay, the snake's movement, collision detection,
and score updates should be active; while in the pause state, these updates should be
suspended.

4. Hardware-Software Interface

The software logic achieves its functionality through interaction with the DE1-SoC
board's hardware. This involves writing driver or interface code, managing memory
access, and configuring peripherals. After computing the game logic, the software
updates the coordinates of the snake's head, the length of the snake's body, and the
apple's coordinates, and transmits them to the registers of the DE1-SoC board via a
kernel program. The hardware reads the data in the registers and accordingly updates
the VGA display. Through appropriate hardware and software communication, we
ensure the best gaming experience and efficient use of the DE1-SoC mainboard
resources.

5. Hardware design

5.1 VGA display

To display the Snake game on the VGA monitor, it needs to generate the required VGA
signals from the FPGA. This includes horizontal synchronization, vertical
synchronization, and red, green, and blue color signals. These signals are generated by
a VGA controller module implemented in the FPGA. The VGA controller reads the
contents of the screen buffer and generates the corresponding RGB signals for the VGA
display. Once the VGA signal generation is designed and tested individually, it will be
integrated into the FPGA design.

us

VGA_RI[7..0] iy
VGA_G[7..0] B

AUTERZ, | AT ; VGA DAC

Cyclone,,@mv’ VGA CLK »| ADV7123
Bec VGA_SYNC_N il
VGA_BLANK N

VGA_VS
VGA_HS

Figure 7: Connections between the FPGA and VGA

ALTERAY

UNIVERSITY
PROGRAM

Back porch (b) Front porch (d)
I

< Display interval (c) (¢

DATA RGB

HSYNC ———————— —

r' N
v
(2]
<
3
o
o
s

Figure 8: VGA waveform

module vga ball(input clk,
input reset,
input 15:0]| writedata,
input write,
input chipselect,

input 2:0] address,

output 7:0] VGA R, VGA G, VGA B,

output VGA CLK, VGA HS, VGA VS,
VGA BLANK_n,

output VGA SYNC n);

Figure 9: Module output & input

Figure 10: Number

Figure 11: Game Screen

5.2 Logitech F310 Wired Gamepad Controller

We establish communication between the DE1-SoC board and the Logitech F310
controller by initializing the USB interface with the appropriate drivers and protocols. We
design a hardware logic module that interprets the controller's inputs, such as button
presses, and maps them to game actions. Implement input handling routines within the
hardware logic to debounce button presses. This can be achieved by using timers or
counters to measure the time elapsed since the last button press and registering the
input event only when the elapsed time exceeds a predetermined threshold.

By following these steps, we successfully designed a hardware logic that processes the
Logitech F310 controller's inputs and translates them into game actions, resulting in a
smooth and responsive gaming experience.

u1s U9
HPS_USB_DATA[7..0] USB_CPEN USB_VCC5
» DATA[7..0] CPEN EN out
USB_EXTVBUS
= «—HPSUSBCLKOUT | ¢ oyt ExTVBUS - FAULT_N
Am b HPS_USB_NXT T vBUS |«—USBVBUS _TPS2553DRVR
U2
BUP_DM
cwlosgg?V HPS_USB_DIR DIR oM [«—2SBUPOM USBUP_DM
HPS_USB_STP slsTp P |«—JSBUPDP I \seup_oP i
HPS RESET D USBDN1_DP [¢= —
USBPHY_CLK_24 i USBDN1_DM (¢ (e
—_— =
= J7USBType-A
- USBDN2_DP (¢ [l
USBDN2_DM |¢—p |
USB3300 USBHUB_CLK_24
- = ! XTALIN/CLKIN U TyneA
) HPS_RESET_n
ADM812

Figure 12: Connections between the HPS and USB OTG PHY

F310 Gamepad features

Control XInput games Directinput games
1. Left button/ Button is digital; Button and trigger
trigger trigger is analog are digital and

programmable®

2. Right button/
trigger

Button is digital; trigger
is analog

Button and trigger
are digital and
programmable®

3. D-pad 8-way D-pad 8-way programmable

D-pad
Programmable*

(clickable for button
function)

Clickable for button
function

4. Two analog
mini-sticks

5. Mode button Selects flight or sports mode. Flight mode:
analog sticks control action and D-pad controls POV;
Status light is off. Sports mode: D-pad controls action

and analog sticks control POV; Status light is on.

6. Mode/status
light

Indicates sports mode (left analog stick and D-pad
are swapped); controlled by Mode button

7. Four action A,B,X,and Y Programmable®
buttons
8. Start button Start Secondary
programmable action
button*®
9. Logitech Guide button or No function
button keyboard’s Home key
10. Back button Back Secondary
programmable action
button*

Table 1: Gamepad features

5.3 Snake Game Audio Implementation

The DE1-SoC board offers 24-bit audio capabilities through the WM8731 audio
CODEC. This chip comprises 2 DACs and 2 ADCs, and we are trying to configure it via
the 12C bus while providing it with a clock at a rate of 12MHz. To synchronize the
CODEC with the snake game's audio generation module, we need to introduce a FIFO
buffer between the two. All these IPs are available in Qsys, specifically, Audio and Video
Config (to configure the CODEC), Audio Clock for DE-series Boards (a PLL that
generates 12MHz), and Audio (a FIFO buffer for audio samples).

U3

WM8731
ph R »| XTIMCLK Mic In I
. J1
A AUD_BCLK » BCLK
A[IIEI m AUD_DACDAT
® = » DACDAT Line In 1
J2
AUD_DACLRCK
Cyclone@V T » DACLRCK »
L J
SoC L AUD_ADCDAT P L ou ‘
AUD_ADCLRCK > J3
< - » ADCLRCK

Figure 13: Connections between the FPGA and audio CODEC

5.4 Resource Budgets
RAM limit: 512 kB = 4096 kb

Category Size(bits)
Snake body coordinates 200*32
Apple coordinates 1*32
Score number 3*4
Background music 120000*16
Eat apple music 2900*16
Hit wall/body music 2900*16
Wall coordinates 4*8

Total bits 2019276

Table 2: Resource Budgets

6. Challenges

6.1 Controller connection

During the process of connecting the game controller to the DE1-SOC Board, we
encountered some issues. We were stuck on this problem for quite some time. Initially,
we planned to use an Xbox controller to connect to the DE1-SOC Board. However, the
Xbox controller is relatively new and some of its features like Bluetooth may hinder the
connection between the controller and the board. So, we then decided to purchase a
Logitech game controller. We chose this particular controller because it has been in
production for a longer time, and some of its settings are more compatible with the
DE1-SOC Board. Unfortunately, we also encountered connection issues with the
Logitech game controller when attempting to connect it to the DE1-SOC Board. We
checked our code, the DE1-SOC Board, and the SD card. Eventually, we discovered
that the problem was related to the connection method of the controller. We needed to
first connect the game controller to the DE1-SOC Board and then restart the DE1-SOC
Board. At this point, the running file would detect a successful connection with the game
controller. During the use of the controller, it must not be disconnected from the
DE1-SOC Board; otherwise, the running file will not detect the controller again. In such
a case, it would be necessary to restart the DE1-SOC Board and unplug and replug the
controller's USB interface.

6.2 Game Audio

The inability to connect music to the FPGA board was primarily due to the challenge of
locating the correct music file. we think several factors could have contributed to this
issue:

File Format: The music file might not be in a format compatible with the FPGA board.
Therefore, even if the file is present, the board might not recognize it, leading to a failure
in establishing the connection.

Directory Structure: The music file might be located in a directory or folder that the
FPGA board does not have access to. In such cases, the file effectively becomes
"invisible" to the board.

7. Future Works

In this project, we have successfully developed a snake game utilizing a Logitech F310
Wired Gamepad Controller on the DE1-SoC board. However, there are several areas
for potential improvements and further research.

7.1 Optimization of Game Performance:

Further optimization of the game's performance can be achieved by refining the
hardware and software logic, including improvements in memory management, game
state transitions.

7.2 Audio:

Currently, we have not identified a suitable sample capable of providing 16-bit audio via
the WM8731 audio CODEC. Our analysis indicates that the issue could be attributed to
the audio device's data format or communication protocol being incompatible with the
DE1-SoC board. This incompatibility may result in incorrect audio data transmission.
The audio device might use a different data format than what the WM8731 audio
CODEC expects, causing the received audio data to be garbled and lead to distorted or
noisy sound output. In future work, we plan to modify the audio device's output or adjust
the WM8731's input settings to ensure proper compatibility.

7.3 Multiplayer Support: Implementing multiplayer support for the snake game on the
DE1-SoC board will enable players to compete against each other. This will require the
development of additional game mechanics, such as determining the winner based on a
certain score threshold. Furthermore, it will be necessary to address the recognition of
two Logitech gamepads by the DE1-SoC board simultaneously, as well as how different
players can identify which snake is controlled by them.

By addressing these key points in future work, we can further improve the snake game,
expand its features, and provide an even more engaging and enjoyable gaming
experience.

8. Contribution

Each team member has made active contributions to the project design and
collaborated closely in shaping the System Architecture.

Team members Yuyang Wang, Jiawen Liu, and Yue Rao were mainly responsible for
developing the software components of the project, including the game logic and device
driver.

Meanwhile, members Yuheng Zhang and Tao Yan are working on crafting the hardware
code with the DE1-SoC board.

Furthermore, all members came together to produce a comprehensive project
documentation, detailing its execution from conception to completion.

9.Software Code
9.1 final.c :

<time.h>
<libusb-1.0/libusb.h>
<stdio.h>

<stdlib.h>

<stdint.h>

<unistd.h>
<pthread.h>
<string.h>

"vga ball.h"

<fcntl.h>

libusb device handle *£310;

endpoint address;

coordinate *bodies;

coordinate apple;
len;

£310 packet packet;
transferred;
vga ball fd;

filename = "/dev/vga ball";
_ball pos position;

game_ pause;
level;
can_change;

coordinate *buf;

£310 packet {

modifiers;

reserved;

keycode[6];

vi
direction;

} head;

coordinate {

.97

libusb device handle *open £310 (*endpoint address) {
libusb device **devs;
libusb device handle *f£310 =
libusb device descriptor desc;
num devs, d;

i, k;

(libusb_init () < 0) {

fprintf (, "Error: libusb init failed\n");

exit (1) ;

((num_devs = libusb get device list(, &devs)) < 0) {
fprintf (, "Error: libusb get device list failed\n");

exit (1) ;

= 0; d < num devs; d++) {
libusb device *dev = devs[d];
(libusb _get device descriptor (dev, &desc) < 0) {
fprintf (, "Error: libusb get device descriptor failed\n");

exit (1) ;

(desc.idVendor == 0x046d && desc.idProduct == 0xc216) {
libusb config descriptor *config;

libusb get config descriptor (dev, 0, &config);

i < config->bNumInterfaces; i++) {

Og
(k = 0; k < config->interface[i].num altsetting; k++) {

libusb interface descriptor *inter =
config->interface[i].altsetting + k;
(inter->bInterfaceClass == 0x03 && inter->bInterfaceProtocol ==

0x00)

r;

((r = libusb_open (dev, &£310)) != 0) {

fprintf (, "Error: libusb open failed:

exit (1) ;

(libusb kernel driver active (£310, 1))
libusb detach kernel driver (£310, 1i);
libusb set auto detach kernel driver (£310,
((r = libusb claim interface (£310, 1))

fprintf (; "Error: libusb claim interface failed:

exit (1) ;
}
*endpoint address = inter->endpoint[0].bEndpointAddress;

found;

found:

libusb free device list(devs, 1);

£310;

set pos (vga ball pos *c) {
vga ball arg t vla;
vla.position = *c;
(ioctl (vga ball fd,
perror("ioctl(VGA73ALL753T7BACKGROUND)

’

(1 == (]
printf ("#");

(1 == head.x && j == head.y) {
printf ("O");

(i == apple.x && j == apple.y) {
printf ("A");

{

printf (" ");

}
printf ("\n") ;

i < len; i++) (head.x == bodies[i].x && head.y == bodies[i].y)

regen apple () {

i, X, yi

rand () %

(X == head.x

(x == bodies[i].x)

y_gen;

(y == bodies[i].y)

apple.x

apple.y =

position.ax

position.ay

*get direction (*arg) |

threadID = * ((*)arg) ;

;i) Ao
libusb interrupt transfer (£310, endpoint address, (*) &packet,
(packet), &transferred, 0);
(transferred == (packet)) {
(can_change) {
(packet.keycode[2] == 0 && head.direction !=
head.direction = g
(packet.keycode[2] == 2 && head.direction
head.direction = g
(packet.keycode[2] == 4 && head.direction
head.direction = 5
(packet.keycode[2] == 6 && head.direction

head.direction = g

}

can_change = 0;
(packet.keycode[3] == 32) {

game pause = !game pause;

(game pause) {

(packet.keycode[2] == 24) {

(packet.keycode[2] == 136) {

= 2;

(packet.keycode[2] == 72) {
level = 3;

(packet.keycode[2] == 40) {

= 4;

}
pthread exit () 7

main () {
i, input, threadID;

thread;

srand (time ()):

((£310 = open £f310 (&endpoint address)) ==

fprintf (, "Did not find £310\n");
exit (1) ;

((vga_ball fd = open(filename, y) == -1) {

fprintf (, "could not open %s\n", filename);

_1;

bodies = malloc (200 * coordinate)) ;

buf = malloc (200 * coordinate)) ;

head.x =
head.y =

head.direction =

position.x = head.x;

position.y = head.y;

level = 1;

game_pause

can_change

pthread create (&thread, , get direction, &threadID);

start:
game pause

can_ change

head.x

head.y
head.direction =
position.x = head.x;

position.y = head.y;

regen apple();

len = 1;

position.length = len + 1;

bodies[0] .x head.x - 1;

bodies[0] .y head.y;

logic:

(77) |

(game_ pause) logic;

(buf, bodies, len coordinate)) ;
(bodies + 1, buf, coordinate)) ;
bodies[0] .x = head.x;

bodies[0] .y = head.y;
(head.direction)
head.y—--;
position.y--;

(head.y <= 0 || hit body()) {

start;

head.y++;

position.y++;
(head.y >=

start;

head.x--;
position.x--;
(head.x <= 0 || hit body()) {

start;

head.x++;
position.x++;
(head.x >= || hit body()) {

start;

(head.x == apple.x && head.y == apple.y)
len++;
position.length++;

regen apple () ;

set pos (&position);

can change = 1;

(level) {
1:
usleep (100000) ;

’

28
usleep (65000) ;

’

{

usleep (10000) ;

’

}

pthread join(thread,

free (bodies) ;

free (buf) ;

9.2 vga_ball.c:
<linux/module.h>
<linux/init.h>
<linux/errno.h>
<linux/version.h>
<linux/kernel.h>
<linux/platform device.h>
<linux/miscdevice.h>
<linux/slab.h>
<linux/io.h>
<linux/of.h>
<linux/of address.h>
<linux/fs.h>
<linux/uaccess.h>

"vga ball.h"

vga ball dev {
resource res;

__lomem *virtbase;

vga ball pos position;

} dev;

write background(vga ball pos *position)

iowritel6 (position->x, (dev.virtbase));

iowritel6 (position->y, (dev.virtbase));

iowritel6 (position->length, (dev.virtbase));
iowritel6 (position->ax, (dev.virtbase));
iowritel6 (position->ay, (dev.virtbase));

dev.position = *position;

vga ball ioctl(

vga ball arg t vla;

(cmd) {

(copy from user (&vla, (vga ball arg t *)

(vga _ball arg t)))
-EACCES;
write background(&vla.position) ;

’

vla.position = dev.position;
(copy to user((vga ball arg t *)
(vga ball arg t)))
—-EACCES;

-EINVAL;

file operations vga ball fops = ({
.owner = THIS MODULE,

.unlocked ioctl = vga ball ioctl,
bi

miscdevice vga ball misc device = {

MISC DYNAMIC MINOR,

’

&vga ball fops,

__init vga ball probe (platform device *pdev)

vga ball pos beige = { 0xf9, Oxed};

ret;

misc_register (&vga ball misc device);

ret = of address to resource (pdev->dev.of node, 0, &dev.res);
(ret) {
ret = —-ENOENT;

out deregister;

(request mem region(dev.res.start, resource size(&dev.res),

) |
ret = -EBUSY;

out deregister;

dev.virtbase = of iomap (pdev->dev.of node, 0);

(dev.virtbase ==) {
ret = -ENOMEM;

out release mem region;

write background (&beige) ;
0;

out release mem region:

releaseimemiregion(dev.res.start, resourceisize(&dev.res));

out deregister:
misc_deregister (&vga ball misc device);

ret;

vga ball remove (platform device *pdev)

iounmap (dev.virtbase) ;
release mem region(dev.res.start, resource size(&dev.res));
misc deregister (&vga ball misc device);

0;

of device id vga ball of match

.compatible = "cseed4840,vga ball-1.0" },

MODULE DEVICE TABLE (of, vga ball of match);

platform driver vga ball driver = {

.driver = {

. name ’

.owner = THIS MODULE,

.of match table of match ptr(vga ball of match),

by

.remove = exit p(vga ball remove),

__init vga ball init(

pr_info(": init\n");

platform driver probe(&vga ball driver, vga ball probe);

__exit vga ball exit(

platform driver unregister (&vga ball driver);

pr_info(

module init(vga ball init);

module exit (vga ball exit);

MODULE LICENSE ("GPL") ;
MODULE AUTHOR ("¢
MODULE DESCRIPTION ("™

vga_ball.h

{
X, y, length,ax,ay;

} vga ball pos;

{

vga ball pos position;

} vga ball arg t;

10.Hardware Code

module vga_ball(input logic clk,
input logic reset,
input logic [15:0] writedata,
input logic write,
input chipselect,

input logic [2:0] address,

output logic [7:0] VGA_R, VGA_G, VGA_B,

output logic VGA CLK, VGA HS, VGA_VS,
VGA_BLANK n,

output logic VGA_SYNC n);

logic [10:0] hcount;
logic [9:0] vcount;

logic [20:0] dis;

logic [15:0] background_r, background_g, background_b;

logic [15:0] pos_x[0:200];

logic [15:0] pos_y[0:200];

logic [15:0] apple_x;

logic [15:0] apple_y;

logic [15:0] head_x,head_y;

logic [15:0] snake_length=2;

logic [9:0] sim_time = 0;

logic extend=0;

logic [0:15] number_zero[0:15], number_one[0:15],
number_two[0:15],number_three[0:15],number_four[0:15];

logic [0:15] number_five[0:15], number_six[0:15],
number_seven[0:15],number_eight[0:15],number_nine[0:15];

logic [3:0] score_a,score_b,score_c;

vga_counters counters(.clk50(clk), .*);

always_ff @(posedge clk)
if (reset) begin
background_r <= 8'h0;
background_g <= 8'h0;
background_b <= 8'h80;
number_zero[0][0:15] <= 16'b0000000000000000;
number_zero[1][0:15] <= 16'b0000000000000000;

number_zero[2][0:15] <=
number_zero[3][0:15] <=
number_zero[4][0:15] <=
number_zero[5][0:15] <=
number_zero[6][0:15] <=
number_zero[7][0:15] <=
number_zero[8][0:15] <=
number_zero[9][0:15] <=
number_zero[10][0:15] <=
number_zero[11][0:15] <=
number_zero[12][0:15] <=
number_zero[13][0:15] <=
number_zero[14][0:15] <=
number_zero[15][0:15] <=
//Inumber1
number_one[0][0:15] <=
number_one[1][0:15] <=
number_one[2][0:15] <=
number_one[3][0:15] <=
number_one[4][0:15] <=
number_one[5][0:15] <=
number_one[6][0:15] <=
number_one[7][0:15] <=
number_one[8][0:15] <=
number_one[9][0:15] <=
number_one[10][0:15] <=
number_one[11][0:15] <=
number_one[12][0:15] <=
number_one[13][0:15] <=
number_one[14][0:15] <=
number_one[15][0:15] <=
//number2
number_two[0][0:15] <=
number_two[1][0:15] <=
number_two[2][0:15] <=
number_two[3][0:15] <=
number_two[4][0:15] <=
number_two[5][0:15] <=
number_two[6][0:15] <=
number_two[7][0:15] <=
number_two[8][0:15] <=
number_two[9][0:15] <=
number_two[10][0:15] <=
number_two[11][0:15] <=

16'b0000000000000000;
16'b0000011111100000;

16'b0000111111110000;

16'b0000110000110000;
16'b0000110000110000;
16'b0000110000110000;
16'b0000110000110000;
16'b0000110000110000;

16'b0000110000110000;
16'b0000111111110000;
16'b0000011111100000;
16'b0000000000000000;
16'b0000000000000000;
16'b0000000000000000;

16'b0000000000000000;
16'b0000000000000000;
16'b0000000000000000;
16'b0000000110000000;
16'b0000001110000000;
16'b0000011110000000;
16'b0000000110000000;
16'b0000000110000000;
16'b0000000110000000;
16'b0000000110000000;

16'b0000000110000000;
16'b0000011111100000;
16'b0000011111100000;
16'b0000000000000000;
16'b0000000000000000;
16'b0000000000000000;

16'b0000000000000000;
16'b0000000000000000;
16'b0000000000000000;
16'b0000011111100000;

16'b0000111111110000;

16'b0000110000110000;
16'b0000000001110000;
16'b0000000011100000;
16'b0000000111000000;
16'b0000001110000000;

16'b0000011100000000;
16'b0000111111110000;

number_two[12][0:15] <= 16'b0000111111110000;

number_two[13][0:15] <= 16'b0000000000000000;
number_two[14][0:15] <= 16'b0000000000000000;
number_two[15][0:15] <= 16'b0000000000000000;
//number3

number_three[0][0:15] <= 16'b0000000000000000;
number_three[1][0:15] <= 16'b0000000000000000;
number_three[2][0:15] <= 16'b0000000000000000;
number_three[3][0:15] <= 16'b0000011111100000;
number_three[4][0:15] <= 16'v0000111111110000;
number_three[5][0:15] <= 16'b0000110000110000;
number_three[6][0:15] <= 16'b0000000000110000;
number_three[7][0:15] <= 16'b0000000111100000;
number_three[8][0:15] <= 16'b0000000111100000;
number_three[9][0:15] <= 16'b0000000000110000;
number_three[10][0:15] <= 16'b0000110000110000;
number_three[11][0:15] <= 16'b0000111111110000;
number_three[12][0:15] <= 16'b0000011111100000;
number_three[13][0:15] <= 16'b0000000000000000;
number_three[14][0:15] <= 16'b0000000000000000;
number_three[15][0:15] <= 16'b0000000000000000;
//number4

number_four[0][0:15] <= 16'b0000000000000000;
number_four[1][0:15] <= 16'b0000000000000000;
number_four[2][0:15] <= 16'b0000000000000000;
number_four[3][0:15] <= 16'b0000000011100000;
number_four[4][0:15] <= 16'b0000000111100000;
number_four[5][0:15] <= 16'b0000001111100000;
number_four[6][0:15] <= 16'b0000011101100000;
number_four[7][0:15] <= 16'b0000111001100000;
number_four[8][0:15] <= 16'b0000110001100000;
number_four[9][0:15] <= 16'b0000111111110000;
number_four[10][0:15] <= 16'b0000111111110000;
number_four[11][0:15] <= 16'b0000000001100000;
number_four[12][0:15] <= 16'b0000000001100000;
number_four[13][0:15] <= 16'b0000000000000000;
number_four[14][0:15] <= 16'b0000000000000000;
number_four[15][0:15] <= 16'b0000000000000000;
//number5

number_five[0][0:15] <= 16'b0000000000000000;
number_five[1][0:15] <= 16'b0000000000000000;
number_five[2][0:15] <= 16'b0000000000000000;
number_five[3][0:15] <= 16'b0000111111110000;
number_five[4][0:15] <= 16'b0000111111110000;

number_five[5][0:15] <=
number_five[6][0:15] <=
number_five[7][0:15] <=
number_five[8][0:15] <=
number_five[9][0:15] <=
number_five[10][0:15] <=
number_five[11][0:15] <=
number_five[12][0:15] <=
number_five[13][0:15] <=
number_five[14][0:15] <=
number_five[15][0:15] <=
//Inumber6
number_six[0][0:15] <=
number_six[1][0:15] <=
number_six[2][0:15] <=
number_six[3][0:15] <=
number_six[4][0:15] <=
number_six[5][0:15] <=
number_six[6][0:15] <=
number_six[7][0:15] <=
number_six[8][0:15] <=
number_six[9][0:15] <=
number_six[10][0:15] <=
number_six[11][0:15] <=
number_six[12][0:15] <=
number_six[13][0:15] <=
number_six[14][0:15] <=
number_six[15][0:15] <=
/I[number7
number_seven[0][0:15] <=
number_seven[1][0:15] <=
number_seven[2][0:15] <=
number_seven[3][0:15] <=
number_seven[4][0:15] <=
number_seven[5][0:15] <=
number_seven[6][0:15] <=
number_seven[7][0:15] <=
number_seven[8][0:15] <=
number_seven[9][0:15] <=
number_seven[10][0:15] <=
number_seven[11][0:15] <=
number_seven[12][0:15] <=
number_seven[13][0:15] <=
number_seven[14][0:15] <=

16'b0000110000000000;
16'b0000110000000000;
16'b0000111111100000;
16'b0000111111110000;
16'b0000000000110000;
16'b0000000000110000;
16'b0000111111110000;
16'b0000111111100000;
16'b0000000000000000;
16'b0000000000000000;
16'b0000000000000000;

16'b0000000000000000;
16'b0000000000000000;
16'b0000000000000000;
16'b0000011111110000;
16'b0000111111110000;
16'b0000110000000000;
16'b0000110000000000;
16'b0000111111100000;
16'b0000111111110000;
16'b0000110000110000;
16'b0000110000110000;
16'b0000111111110000;
16'b0000011111100000;
16'b0000000000000000;
16'b0000000000000000;
16'b0000000000000000;

16'b0000000000000000;
16'b0000000000000000;
16'b0000000000000000;
16'b0000111111110000;

16'b0000111111110000;

16'b0000000000110000;
16'b0000000001110000;
16'b0000000011100000;
16'b0000000111000000;
16'b0000001110000000;
16'b0000011100000000;
16'b0000111000000000;
16'b0000110000000000;
16'b0000000000000000;
16'b0000000000000000;

number_seven[15][0:15] <= 16'b0000000000000000;
//Inumber8

number_eight[0][0:15] <= 16'b0000000000000000;
number_eight[1][0:15] <= 16'b0000000000000000;
number_eight[2][0:15] <= 16'b0000000000000000;
number_eight[3][0:15] <= 16'b0000011111100000;
number_eight[4][0:15] <= 16'b0000111111110000;
number_eight[5][0:15] <= 16'b0000110000110000;
number_eight[6][0:15] <= 16'b0000110000110000;
number_eight[7][0:15] <= 16'b0000011111100000;
number_eight[8][0:15] <= 16'b0000011111100000;
number_eight[9][0:15] <= 16'b0000110000110000;
number_eight[10][0:15] <= 16'b0000110000110000;
number_eight[11][0:15] <= 16'b0000111111110000;
number_eight[12][0:15] <= 16'b0000011111100000;
number_eight[13][0:15] <= 16'b0000000000000000;
number_eight[14][0:15] <= 16'b0000000000000000;
number_eight[15][0:15] <= 16'b0000000000000000;
//number9

number_nine[0][0:15] <= 16'b0000000000000000;
number_nine[1][0:15] <= 16'b0000000000000000;
number_nine[2][0:15] <= 16'b0000000000000000;
number_nine[3][0:15] <= 16'b0000011111100000;
number_nine[4][0:15] <= 16'b0000111111110000;
number_nine[5][0:15] <= 16'b0000110000110000;
number_nine[6][0:15] <= 16'b0000110000110000;
number_nine[7][0:15] <= 16'b0000111111110000;
number_nine[8][0:15] <= 16'b0000011111110000;
number_nine[9][0:15] <= 16'b0000000000110000;
number_nine[10][0:15] <= 16'b0000000000110000;
number_nine[11][0:15] <= 16'v0000111111110000;
number_nine[12][0:15] <= 16'b0000111111100000;
number_nine[13][0:15] <= 16'b0000000000000000;
number_nine[14][0:15] <= 16'b0000000000000000;
number_nine[15][0:15] <= 16'b0000000000000000;

end else if (chipselect && write)
case (address)
3'h0 : head_x <= writedata;
3'h1 : head_y <= writedata;
3'h2 : snake_length <= writedata;
3'h3 : apple_x <= writedata;
3'h4 : apple_y <= writedata;
endcase

always_ff @(posedge clk)
if(reset)begin
pos_x[0] <= 50;
pos_y[0] <= 40;
pos_x[1] <= 51;
pos_y[1] <= 40;
end
else begin
if(pos_x[0] '= head_x||pos_y[0] != head_y)begin
extend<=1;
score_a <= snake_length%10;
score_b <= (snake_length/10)%10;
score_c <= snake_length/100;
for (int j=200; j>0;j--)begin
if(i<x=snake_length-1)begin
pos_x[j]=pos_x[j-1];
pos_y[j]=pos_y[i-1];
end
end
pos_x[0]=head_x;
pos_y[0]=head_y;
extend<=0;
[Fif(pos_x[1]>30&&pos_y[1]<=40&&pos_x[1]<70)begin pos_x[0]=pos_x[1]-1;
pos_y[0]=pos_y[1];end
else if(pos_x[1]<=30&&pos_y[1]<60) begin pos_x[0]=pos_x[1]; pos_y[0]=pos_y[1]+1;end
else if(pos_x[1]>30&&pos_y[1]>=60&&pos_x[1]<70) begin pos_x[0]=pos_x[1]+1;
pos_y[0]=pos_y[1];end
else if(pos_x[1]>=70) begin pos_x[0]=pos_x[1]; pos_y[0]=pos_y[1]-1;end
sim_time = 0;*/
end
end

always_comb begin
{VGA_R, VGA_G, VGA_B} = {8'h0, 8'h0, 8'h0};
if (VGA_BLANK n && lextend)begin
{VGA_R, VGA_G, VGA_B} ={8'h0, 8'h0, 8'h80};
for(int i=0; i<200;i++) begin
if(i<snake_length&&i!=0)begin
if (hcount > 12*pos_x[i] && hcount < 12*(pos_x[i]+1)
&& vcount > 6*pos_yJ[i] && vcount < 6*(pos_yl[i]+1))
{VGA_R, VGA_G, VGA_B} = {8'hff, 8'hff, 8'hff};
end
else if(i==0&&hcount > 12*pos_x[i] && hcount < 12*(pos_x[i]+1)

&& vcount > 6*pos_yJ[i] && vcount < 6*(pos_y[i]+1)) {(VGA_R, VGA_G, VGA_B}
={8'h0, 8'h80, 8'h0};
[*else if (hcount[10:6] == 5'd3 &&
vcount[9:5] == 5'd3)
{VGA_R, VGA_G, VGA_Bj} = {8'hff, 8'hff, 8'hff};*/

end
if (hcount > 12*apple_x && hcount < 12*(apple_x+1)
&& vcount > 6*apple_y && vcount < 6*(apple_y+1))
{VGA_R, VGA_G, VGA_B} ={8'h80, 8'h0, 8'h0};
if ((hcount>=0&&hcount<12) || (hcount >= 79*12 && hcount<80*12)
|| (vcount >= 0&&vcount<6&& hcount<79*12)||(vcount >= 79*6&&vcount<80*6&&
hcount<79*12))
{VGA_R, VGA_G, VGA_B} = {8'nff, 8'hff, 8'hff};

if (hcount >= 1100 && hcount <1116
&& vecount >=30 && vcount < 46&&score_a==0)begin
if(number_zero[vcount-30][hcount-1100]==1) {VGA_R, VGA_G, VGA_B]} = {8'hff, 8'hff,
8'hff};
else {VGA_R, VGA_G, VGA_B} = {8'h0, 8'h0, 8'h80};
end
if (hcount >= 1100 && hcount <1116
&& vecount >=30 && vcount < 46&&score_a==1)begin
if(number_one[vcount-30][hcount-1100]==1) {VGA R, VGA_G, VGA_ B} = {8'hff, 8'hff,
8'hff};
else {VGA_R, VGA_G, VGA_B} = {8'h0, 8'h0, 8'h80};
end
if (hcount >= 1100 && hcount <1116
&& vcount >=30 && vcount < 46&&score_a==2)begin
if(number_two[vcount-30][hcount-1100]==1) {VGA_R, VGA_G, VGA_B} = {8'hff, 8'hff,
8'hff};
else {VGA_R, VGA_G, VGA_B} = {8'h0, 8'h0, 8'h80};
end
if (hcount >= 1100 && hcount <1116
&& vecount >=30 && vcount < 46&&score_a==3)begin
if(number_three[vcount-30][hcount-1100]==1) {VGA_R, VGA_G, VGA_B} = {8'hff, 8'hff,
8'hff};
else {VGA_R, VGA_G, VGA_B} = {8'h0, 8'h0, 8'h80};
end
if (hcount >= 1100 && hcount <1116
&& vecount >=30 && vcount < 46&&score_a==4)begin
if(number_four[vcount-30][hcount-1100]==1) {VGA_R, VGA_ G, VGA B} = {8'hff, 8'hff,
8'hff};

else {VGA_R, VGA_G, VGA_B} = {8'h0, 8'h0, 8'h80};
end
if (hcount >= 1100 && hcount <1116
&& veount >=30 && vcount < 46&&score_a==5)begin
if(number_five[vcount-30][hcount-1100]==1) {VGA_R, VGA_G, VGA_B} = {8'hff, 8'hff,
8'hff};
else {VGA_R, VGA_G, VGA_B} = {8'h0, 8'h0, 8'h80};
end
if (hcount >= 1100 && hcount <1116
&& vcount >=30 && vcount < 46&&score_a==6)begin
if(number_six[vcount-30][hcount-1100]==1) {VGA_R, VGA_G, VGA_B} = {8'hff, 8'hff, 8'hff};
else {VGA_R, VGA_G, VGA_B} = {8'h0, 8'h0, 8'h80};
end
if (hcount >= 1100 && hcount <1116
&& vcount >=30 && vcount < 46&&score_a==7)begin
if(number_seven[vcount-30][hcount-1100]==1) {VGA_R, VGA_G, VGA_B} = {8'hff, 8'hff,
8'hff};
else {VGA_R, VGA_G, VGA_B} = {8'h0, 8'h0, 8'h80};
end
if (hcount >= 1100 && hcount <1116
&& vcount >=30 && vcount < 46&&score_a==8)begin
if(number_eight[vcount-30][hcount-1100]==1) {VGA_R, VGA_G, VGA_B} = {8'hff, 8'hff,
8'hff};
else {VGA_R, VGA_G, VGA_B} = {8'h0, 8'h0, 8'h80};
end
if (hcount >= 1100 && hcount <1116
&& veount >=30 && vcount < 46&&score_a==9)begin
if(number_nine[vcount-30][hcount-1100]==1) {VGA_R, VGA_G, VGA_B} = {8'hff, 8'hff,
8'hff};
else {VGA_R, VGA_G, VGA_B} = {8'h0, 8'h0, 8'h80};
end

if (hcount >= 1075 && hcount <1091
&& vecount >=30 && vcount < 46&&score_b==0)begin
if(number_zero[vcount-30][hcount-1075]==1) {VGA_R, VGA G, VGA_B} = {8'hff, 8'hff,
8'hff};
else {VGA_R, VGA_G, VGA_B} = {8'h0, 8'h0, 8'h80};
end
if (hcount >= 1075 && hcount <1091
&& vcount >=30 && vcount < 46&&score_b==1)begin

if(number_one[vcount-30][hcount-1075]==1) {VGA_R, VGA_G, VGA_B} = {8'hff, 8'hff,
8'hff};
else {VGA_R, VGA_G, VGA_B} = {8'h0, 8'h0, 8'h80};
end
if (hcount >= 1075 && hcount <1091
&& veount >=30 && vcount < 46&&score_b==2)begin
if(number_two[vcount-30][hcount-1075]==1) {VGA_R, VGA_G, VGA_B} = {8'hff, 8'hff,
8'hff};
else {VGA_R, VGA_G, VGA_B} = {8'h0, 8'h0, 8'h80};
end
if (hcount >= 1075 && hcount <1091
&& vcount >=30 && vcount < 46&&score_b==3)begin
if(number_three[vcount-30][hcount-1100]==1) {VGA_R, VGA_G, VGA_B} = {8'hff, 8'nhff,
8'hff};
else {VGA_R, VGA_G, VGA_B} = {8'h0, 8'h0, 8'h80};
end
if (hcount >= 1075 && hcount <1091
&& vecount >=30 && vcount < 46&&score_b==4)begin
if(number_four[vcount-30][hcount-1075]==1) {VGA_R, VGA_G, VGA_B} = {8'hff, 8'hff,
8'hff};
else {VGA_R, VGA_G, VGA_B} = {8'h0, 8'h0, 8'h80};
end
if (hcount >= 1075 && hcount <1091
&& veount >=30 && vcount < 46&&score_b==5)begin
if(number_five[vcount-30][hcount-1075]==1) {VGA_R, VGA_G, VGA_B} = {8'hff, 8'hff,
8'hff};
else {VGA_R, VGA_G, VGA_B} = {8'h0, 8'h0, 8'h80};
end
if (hcount >= 1075 && hcount <1091
&& vcount >=30 && vcount < 46&&score_b==6)begin
if(number_six[vcount-30][hcount-1075]==1) {VGA_R, VGA_G, VGA_B} = {8'hff, 8'hff, 8'hff};
else {VGA_R, VGA_G, VGA_B} = {8'h0, 8'h0, 8'h80};
end
if (hcount >= 1075 && hcount <1091
&& vcount >=30 && vcount < 46&&score_b==7)begin
if(number_seven[vcount-30][hcount-1075]==1) {VGA_R, VGA_G, VGA_B} = {8'hff, 8'hff,
8'hff};
else {VGA_R, VGA_G, VGA_B} = {8'h0, 8'h0, 8'h80};
end
if (hcount >= 1075 && hcount <1091
&& vecount >=30 && vcount < 46&&score_b==8)begin
if(number_eight[vcount-30][hcount-1075]==1) {VGA_R, VGA_G, VGA_B} = {8'hff, 8'hff,
8'hff};
else {VGA_R, VGA_G, VGA_B} = {8'h0, 8'h0, 8'h80};

end
if (hcount >= 1075 && hcount <1091
&& vecount >=30 && vcount < 46&&score_b==9)begin
if(number_nine[vcount-30][hcount-1075]==1) {VGA_R, VGA_G, VGA_B} = {8'hff, 8'hff,
8'hff};
else {VGA_R, VGA_G, VGA_B} = {8'h0, 8'h0, 8'h80};
end

if (hcount >= 1050 && hcount <1066
&& vcount >=30 && vcount < 46&&score_c==0)begin
if(number_zero[vcount-30][hcount-1050]==1) {VGA_R, VGA_G, VGA_B} = {8'hff, 8'nff,
8'hff};
else {VGA_R, VGA_G, VGA_B} = {8'h0, 8'h0, 8'h80};
end
if (hcount >= 1050 && hcount <1066
&& vecount >=30 && vcount < 46&&score_c==1)begin
if(number_one[vcount-30][hcount-1050]==1) {VGA_R, VGA_G, VGA_B} = {8'hff, 8'hff,
8'hff};
else {VGA_R, VGA_G, VGA_B} = {8'h0, 8'h0, 8'h80};
end
if (hcount >= 1050 && hcount <1066
&& vcount >=30 && vcount < 46&&score_c==2)begin
if(number_two[vcount-30][hcount-1050]==1) {VGA_R, VGA_G, VGA_B} = {8'hff, 8'hff,
8'hff};
else {VGA_R, VGA_G, VGA_B} = {8'h0, 8'h0, 8'h80};
end
if (hcount >= 1050 && hcount <1066
&& vcount >=30 && vcount < 46&&score_c==3)begin
if(number_three[vcount-30][hcount-1050]==1) {VGA_R, VGA_G, VGA_B} = {8'hff, 8'hff,
8'hff};
else {VGA_R, VGA_G, VGA_B} = {8'h0, 8'h0, 8'h80};
end
if (hcount >= 1050 && hcount <1066
&& vecount >=30 && vcount < 46&&score_c==4)begin
if(number_four[vcount-30][hcount-1050]==1) {VGA_R, VGA_G, VGA_B} = {8'hff, 8'hff,
8'hff};
else {VGA_R, VGA_G, VGA_B} = {8'h0, 8'h0, 8'h80};
end
if (hcount >= 1050 && hcount <1066
&& vecount >=30 && vcount < 46&&score_c==5)begin
if(number_five[vcount-30][hcount-1050]==1) {VGA_R, VGA_G, VGA_B} = {8'hff, 8'hff,
8'hff};

else {VGA_R, VGA_G, VGA_B} = {8'h0, 8'h0, 8'h80};
end
if (hcount >= 1050 && hcount <1066
&& veount >=30 && vcount < 46&&score_c==6)begin
if(number_six[vcount-30][hcount-1050]==1) {VGA_R, VGA_G, VGA_B} = {8'hff, 8'hff, 8'hff};
else {VGA_R, VGA_G, VGA_B} = {8'h0, 8'h0, 8'h80};
end
if (hcount >= 1050 && hcount <1066
&& veount >=30 && vcount < 46&&score_c==7)begin
if(number_seven[vcount-30][hcount-1050]==1) {VGA_R, VGA_G, VGA_ B} = {8'hff, 8'hff,
8'hff};
else {VGA_R, VGA_G, VGA_B} = {8'h0, 8'h0, 8'h80};
end
if (hcount >= 1050 && hcount <1066
&& vcount >=30 && vcount < 46&&score_c==8)begin
if(number_eight[vcount-30][hcount-1050]==1) {VGA_R, VGA_G, VGA_B} = {8'hff, 8'hff,
8'hff};
else {VGA_R, VGA_G, VGA_B} = {8'h0, 8'h0, 8'h80};
end
if (hcount >= 1050 && hcount <1066
&& vecount >=30 && vcount < 46&&score_c==9)begin
if(number_nine[vcount-30][hcount-1050]==1) {VGA_R, VGA_G, VGA_B} = {8'hff, 8'hff,
8'hff};
else {VGA_R, VGA_G, VGA_B} = {8'h0, 8'h0, 8'h80};
end
end
end

endmodule

module vga_counters(

input logic clk50, reset,

output logic [10:0] hcount, // hcount[10:1] is pixel column

output logic [9:0] vcount, // vcount[9:0] is pixel row

output logic VGA_CLK, VGA_HS, VGA_VS, VGA_BLANK_n, VGA_SYNC_n);

/*
* 640 X 480 VGA timing for a 50 MHz clock: one pixel every other cycle

*

*HCOUNT 1599 0 1279 1599 0

*

*_ | Video | | Video

*

*

*|SYNC| BP |<-- HACTIVE -->|FP|SYNC]| BP |<-- HACTIVE
| VGA HS]
*/
/I Parameters for hcount
parameter HACTIVE =11'd 1280,
HFRONT_PORCH = 11'd 32,
HSYNC =11'd 192,
HBACK_PORCH = 11'd 96,
HTOTAL = HACTIVE + HFRONT_PORCH + HSYNC +
HBACK_PORCH,; // 1600

/I Parameters for vcount
parameter VACTIVE =10'd 480,
VFRONT_PORCH = 10'd 10,
VSYNC =10'd 2,
VBACK_PORCH =10'd 33,
VTOTAL = VACTIVE + VFRONT_PORCH + VSYNC +
VBACK_PORCH,; // 525

logic endOfLine;

always_ff @(posedge clk50 or posedge reset)

if (reset) hcount <= 0;
else if (endOfLine) hcount <= 0;
else hcount <= hcount + 11'd 1;

assign endOfLine = hcount == HTOTAL - 1;
logic endOfField;

always_ff @(posedge clk50 or posedge reset)
if (reset) vcount <= 0;
else if (endOfLine)
if (endOfField) vcount <= 0;
else veount <= vcount + 10'd 1;

assign endOfField = vcount == VTOTAL - 1;

/I Horizontal sync: from 0x520 to 0x5DF (0x57F)
// 101 0010 0000 to 101 1101 1111
assign VGA_HS =!((hcount[10:8] == 3'b101) &
I(hcount[7:5] == 3'b111));
assign VGA_VS = I(vcount[9:1] == (VACTIVE + VFRONT_PORCH) / 2);

assign VGA_SYNC _n = 1'b0; // For putting sync on the green signal; unused

/I Horizontal active: 0 to 1279 Vertical active: 0 to 479

// 101 0000 0000 1280 01 1110 0000 480

// 110 0011 1111 1599 10 0000 1100 524

assign VGA_BLANK n =I(hcount[10] & (hcount[9] | hcount[8])) &
I(veount[9] | (vcount[8:5] == 4'b1111));

I*VGA_CLK is 25 MHz

*

*ok50 | || ||

*

*

*hcount[0]_| | |
*/
assign VGA_CLK = hcount[0]; // 25 MHz clock: rising edge sensitive

endmodule

