
CSEE 4840 EMBEDDED SYSTEM DIGN

SECURITY CAMERA
Final Project Report Columbia University

Team Members:

Noe Silva - ns3567

Elli Flrores Portillo - esf2150

Mir Naveen Alam - ma4310

Carlos Eduardo Cruz - cec2274

Shifeng Zhang - sz3104

1



Table of Contents

1. Overview …………………………………………………………………………………………………………..3

2. System Architecture ………………………………………………………………………………………3

2.1. Pixel’s Bits Processing……………………………………………………………………………….4

2.2. RTL Schematic…………………………………………………………………………………………….5

3. Hardware Design ……………………………………………………………………………………………6

3.1 OV7670 Video Camera……………………………………………………………………………….6

3.2 SDRAM………………………………………………………………………………………………………..7

3.3 VGA Monitor……………………………………………………………………………………………….8

3.4 SD Card……………………………………………………………………………………………………….9

3.5 PIR Sensor………………………………………………………………………………………………….9

4. Algorithms ………………………………………………………………………………………………..……11

4.1 SCCB Procol …………………………………………………………………………………………..11

4.2 SPI Procol………………………………………………………………………………………………12

5. Problems Encounter………………………………………………….…………………………………….14

5.1 Several clock domains…………………………………………………………………………………14

5.2 N enough on-chip Memory……………………………………………………………………..14

6. Results and Further Improvements …………….……………………………………………..14

7. References …………………………………………………………………………..……………………………15

8. Appendix ……………………………………………………………………………………….…………………16

2



1. Overview
The core goal of this project is to implement a Security Video Camera capable of

live-streaming video in VGA format. Complementary, a PIR sensor executes motion

detection that triggers a signal to capture video frames and stores them on an SD Card in

bitstream format. The target device is a cyclone V FPGA embedded on the De1-Soc

Development Kit board that also contains a dual-core Arm Cortex A9 processor on it.

Furthermore, ve peripherals are connected to the board to achieve our purpose; Video

Camera, Motion Sensor, Sdram, Sd-card, and VGA Monitor.

2. System Architecture

The gure below shows a top-level block diagram with the main components and

their dependencies.

Figure 1. System Architecture Diagram

3



2.1. Pixel’s bits Processing

A 24MHz clock is driving the OV7670 Camera which outputs 8 bits in parallel on each
falling edge of the clock. The camera talks to the FPGA through the SCCB protocol. The
FPGA captures 8 bits in the rst cycle, then waits for the second cycle and captures 8 more
bits. A total of 16 bits (one pixel) are sent to the Asynchronous FIFO. The output of the
FIFO is connected to the onboard SDRAM through an SDRAM driver, The SDRAM is
similarly connected to a second FIFO. From the output of the second FIFO, bits are padded
to the vga_outputs to resize them to 8 bits each and then normalized. Three bytes are sent
to the VGA DAC to nally display the pixels at 25MHz frequency.

Figure 2. Pixel’s bits processing

4



2.2. RTL Schematic

Top Level Schematic, connected to the ve peripherals, VGA monitor, OV7670 video

camera, and 64 MB SDRAM (32Mx16) chip, SD Card and PIR Sensor. We used three clock

domains taking as reference the onboard 50MHz clock.

Figure 3. RTL Schematic

5



3.1 OV7670 Camera Module

The OV7670 Camera module has a resolution of 640x480 pixels. It’s capable of

displaying up to 30 frames per second. The OV7670 uses the Serial Camera Control Bus

(SCCB) protocol to communicate with external hardware. There are two versions, one with

16 bits and the other with 18 pins. In this project, the 18-pin module was used and it’s

shown below.

Figure 4. OV7670 Module

On the chart below there is a description of the camera's pins. The module is powered

on with 3.3 V, it receives an input clock (XCLK) and produces an output pixel clock (PCLK).

The falling edge of the pixel clock is used to output the parallel 7 bits. The maximum XCLK

frequency is 25MHz, for this project, we used a clock frequency of 24MHz just to make sure

we did not drive the camera to its limit.

Chart 1. OV7670 Pins

6



All 18 of the camera’s pins were connected to the GPIO expansion headers of the FPGA.

The rst step before starting the pixel’s bits transmission is to congure the camera

mode operation by sending commands to set its registers. We set the camera to operate in

the RGB565 format. Each pixel is represented by 5 bits for red, 6 bits for green, and 5 bits

for blue. Due to each pixel being 16 bits(2 Bytes), two clock cycles are necessary to capture

a single pixel.

3.2 SDRAM

The amount of memory necessary to store a frame is 16 bits X 480 X 680 = 4, 915, 200 /

8 = 614 KB. The on-chip memory provided by the DE1-SoC is 256KB (BRAM), therefore there

is not enough memory to store a single frame. We used the 64 MB synchronous dynamic

RAM (SDRAM) on the DE1-SoC board, which is organized as 32M x 16 bits, and used the

BRAM as a pixel buer.

Figure 6. Shows the connections between the FPGA and the 64 MB SDRAM chip. A 143MHz

clock frequency was used to read/write data onto the SDRAM.

Figure 5. Connections between the SDRAM and the FPGA

7



3.3 VGA Monitor

As mentioned above, the images captured and stored in the SD Card will be displayed

on a VGA (Video Graphics Array) monitor. The DE1-SoC board has a 15-pin D-SUB connector

populated for VGA output. The VGA synchronization signals are generated directly from the

Cyclone V SoC FPGA, and the Analog Devices ADV7123 triple 10-bit high-speed video DAC

(only the higher 8-bits are used) transforms signals from digital to analog to represent three

fundamental colors (red, green, and blue). The board can support up to 1280X1024 pixels

resolution. For this project our pixel resolution is dictated by the video camera resolution;

in this case 640X480 pixels.

Figure 6 shows the connections between the FPGA board and the VGA connector. Notice

that a digital-to-analog converter is placed in between. In total 29 Pins of the FPGA are

dedicated to VGA.

Figure 6. Connections between the DAC, VGA connector, and FPGA

3.4 SD Card

To store the images captured from the camera when motion is detected, an external

SD card reader is used. To communicate with the SD card reader it uses the Serial

Peripheral Interface (SPI) protocol, which will be discussed later in this report. The SD card

has 6 pins for power (VCC), ground (GND), Master In Slave Out (MISO), Master Out Slave In

(MOSI), Serial Clock (SCK), and Chip Select (CS) as shown below.

8



Figure 7. Image of the SD Card Reader

In the camera interface whenever the PIR sensor detects motion it writes one single

frame to the asynchronous FIFO. It does this by connecting the empty signal of the FIFO to

the write signal of the SD card interface. When the FIFO is not empty so it is full then write

whatever is in the FIFO into the SD card. This should only be one frame at the time of

motion detection. The SD card can be taken out of the reader and inserted into any

computer to look at the various images captured.

3.5 HC-SR501 PIR sensor
The infrared sensor detects infrared light radiated from objects. It is a passive infrared

sensor (PIR) that detects heat energy from objects. This type of sensor is widely used in

alarm systems, often used as motion detectors. Due to the sensed data being analog, we

need to convert it to digital. Also, the PIR sensor has a built-in noise immunity that helps to

provide a smooth digital output pulse. It has an adjustable sensitivity where the range can

be set from 3 to 7 meters. In fact, not only do the Fresnel lenses help to focus more light

into the pyroelectric sensor but also help to increase the range. So the sensor detective can

be more ecient. Similarly, the delay when the output goes high can be adjustable, which

ranges from 1 second to 3 minutes. In addition, the sensor has two trigger modes where

the rst is a single-trigger mode and the second is a multiple-trigger mode. In the single

9



trigger mode, when motion is detected the output will go high and remain high depending

on the delay setting. If motion continues within the delay, the sensor will not detect it (See

gure [17]). In the multiple-trigger mode, the output will go high when motion is detected

and will remain high depending on the delay setting. If motion is detected during the rst

or previous time delay, the output will be high for a new delay period (See gure [18]).

Since this sensor has many settings, it is suitable for our project. The idea is to

congure one of the GPIO pins on the FPGA as input and connect the output of the sensor.

Then, the power will be supplied through the VCC5 pin onboard.

Figure 8. HC-SR501 PIR sensor

Figure 9. Single Trigger Mode Detection.

Figure 10. Multiple Trigger Mode Detection

10



4.1 SCCB Protocol

To communicate with the OV7670 camera module the Serial Camera Control Bus

(SCCB) protocol is used, which is a subset of the I2C protocol. SCCB has two dierent styles:

3-wire and 2-wire variations. The 3-wire method is used to have multiple slaves controlled

by one master and the 2-wire method is used for only one master and slave. This project

will implement the 2-wire approach since there is only 1 camera being used.

Figure 11. 2-Wire SCCB

The 2-wire SCCB protocol contains a clock signal SIO_C (Serial Input Output) and a data

transmission signal SIO_D. Data on the SIO_D signal gets written based on the clock from

the SIO_C signal.

Figure 12. Waveforms for SCCB Protocol NOTE: This gure represents the 3-wire method.

Data is sent out in phases of 9 bits each, 8 for data and 1 Don’t-Care bit depending

on whether the transmission is a read or write. The purpose of the Don’t-Care bit is to

notify that the transmission is complete. The maximum number of phases a transmission

can have is 3, one for ID Address, Sub-address, and Write Data.

Figure 13. SCCB Data transmission

The ID Address identies the slave to write and read data from, the Sub-addresses an

address from the slave that contains the read data from the slave, and the Write Data is the

data from the master to the slave.

11



4.2 SPI Protocol
The Serial Peripheral Interface (SPI) in this project is used mainly to communicate

with the SD card. One of the reasons is that SPI uses less hardware and system resources

compared to USB. The second reason is that SPI is supported by SD cards. Since SD cards

have two modes of operation which are SD mode and SPI mode. Where the SD mode oers

higher throughput compared to the SPI mode. The drawback of SD mode is that one has to

sign a nondisclosure agreement and pay some royalties. Thus, we have to take some

tradeos.

In Addition, the SPI protocol works in a master-slave fashion. Where the master is

the controlling device (in this case the FPGA) and the slave takes instructions (in this case

SD card). It is worth mentioning that the master can control dierent slaves. However, in

this project, we only have to control one slave (Figure 14). The master output slave input

(MOSI) line transfers data from the master to the slave. Usually, the data is sent from the

master to the slave with the most signicant bit(MSB) rst. Inversely, the master input slave

output (MISO) line transfers the data from the slave to the master. Typically, the data sent

from the slave to the master starts with the least signicant bit(LSB) rst. The SCLK is the

input clock signal for the slave. The CS is the chip select, this is in charge of selecting a

slave. In the case of dealing with more than one slave, each slave will have a dedicated CS

line(Figure 15). Then, the master will assert (active low) the correct slave device that it

wants to communicate with. if the master is communicating with many slaves. When the

communication is nished with a certain slave, the master will de-assert (logic high) the

slave. In the case of communicating with a single slave, the CS can be active (logic 0) all the

time(Figure 14).

Figure 14. SPI protocol with a single slave

12



Figure 15. SPI protocol with multiple slaves

The SPI diver that we are implementing transfers and receives data at the positive

edge of the clock. This is specied when the SPI mode is asserted to zero. In addition, this

module has two frequency options. The reason for having two options is that the

initialization of the SD card is performed at 400KHz. Once the initialization is done, writing

data into the SD card is performed at 25MHz to maximize the throughput. An overview of

the SPI module can be seen in Figure 16.

Figure 16. SPI module.

13



5.1 Insucient on-Chip Memory

Initially, we wanted to use the on-chip memory to store the pixels but quickly realized

that was a limitation due to the size of memory necessary to store a single frame in
RGB565 format: 16 bits X 480 X 640 = 614.4KB. The on-chip RAM on the DE1-SoC is 256KB
which is far less than what we needed. This forced us to add another peripheral and its
driver; the On board 64MB SDRAM chip.

5.2 Several Clock Domains

We used three clock domains, one for the OV7670 video camera(24MHz), one for the

VGA monitor(25MHz), and one more for the SDRAM(143MHz). We were stuck for a while
because the VGA monitor was displaying a very distorted signal that looked like noise and
this was because we were using the same clock(143MHz) for reading and writing to the
SDRAM; A hold-setup timing violation was occurring. This issue was solved by creating a
180 degrees phase shift between the write clock and the read clock. For such a task, an
Altera ALTDDIO IP was implemented.

6. Results and Improvements

The core component of the project was to rst obtain live color video and then add

peripherals to make the system smart. We successfully obtained live color video and
motion detection. Unfortunately, time was a scarce resource and we were not able to
successfully store frames into the SD card each time motion was detected. We created an
sd card module and its driver(SPI) and connected it to the top module, but no binary le
was written in the sd card. After troubleshooting, we think that we are probably not
initializing the sd card correctly. Therefore, successfully saving frames into the sd card
when motion is detected would be a further improvement.

14



7. References

https://community.element14.com/challenges-projects/design-challenges/su
mmer-of-fpga/b/blog/posts/security-camera-1-project-proposal-629530496

https://www.circuitbasics.com/basics-of-the-i2c-communication-protocol/

http://embeddedprogrammer.blogspot.com/2012/07/hacking-ov7670-camera-
module-sccb-cheat.html

http://web.mit.edu/6.111/www/f2016/tools/OV7670_2006.pdf

https://github.com/AngeloJacobo/FPGA_OV7670_Camera_Interface

DE1-SoC_User_manual.pdf

15



8. Appendix

16



17



18



19



20



21



22



23



24



25



26



27



28



29



30



31



32



33



34



35



36



37



38



39



9 Contributions

Noe Silva - SDRAM and Timing

Mir Naveen Alam - Camera Interface and VGA Interface

Eli Flores Portillo - SCCB/I2C and VGA

- SPI and VGACarlos Eduardo Cruz

Shifeng Zhang - PIR Sensor

Ne: The contributions above represent what each member spent the most

time on. However, none of the tasks were done completely individually.

Every member was involved in each of the tasks.

40


