
Live-Feed Video Transmitted over the Network
Michael Lee, Kenny Martinez, Carlos D. Nunez, James Phan, Patricio Tapia

Columbia University, New York, NY 10027
Department of Electrical Engineering & Computer Engineering
{ml4719, km3734, cdn2128, bnp2113, pet2119} @columbia.edu

Abstract – This project is an implementation of a live
stream between one camera and one viewer. This is
accomplished by having two DE1 FPGAs communicate
with each other over a local network. The
“transmitting” board displays data from an OV7670
CMOS camera to a connected VGA monitor and sends
a collected frame buffer over the network as a series of
UDP packets. On the other end of the network, a
“receiving” board takes and organizes this data,
eventually displaying this data itself on an additional

VGA monitor.

I. Project Overview

Facilitated by the internet, millions today around
the globe enjoy live streamed content produced from all
other parts of the world. Despite its popularity and
extensive use, the process of converting a camera feed into
a comprehensible video on the consumer-side is complex
and necessarily complex as higher resolution standards,
such as 4K, gain traction. As higher resolution standards
are called to encode streamable and real-time content,
engineers will be pressed to find ways to maintain and
increase data rates between devices to maintain acceptable
refresh rates. In an effort to more deeply understand this
problem and appreciate its challenges, our group was
motivated to create a system for sharing real-time video
streams on a local network. In doing so, we’ve found that
this application is so commonplace in modern everyday
life.

The goal of this project is to use two DE1-SoC
FPGAs and communicate the live-feed of an external
camera from one to the other. A successful implementation
of this idea would result in the data from the camera being
displayed to two external VGA monitors - one at each of
the two transmitting and receiver boards.

On the transmitter side, data is saved to an
instance of Block Random Access Memory (BRAM) which
acts as a “frame buffer” which stores all the pixel values
from one frame of video. Simultaneously, each byte of
camera data is sent to a VGA module to display this
information in real time. To simplify the design, our team

made the decision early on to collect and display only in
black and white by sampling the YGB channels of the
camera. The persistent copy of data inside the frame buffer
is sent in packets of 508 bytes per UDP packet (to
minimize packet loss) to the receiving board. This is done
through a userspace program which reads the data stored in
BRAM through a driver that our team has written.

The transmitter has a complementary userspace
program that receives the UDP packets containing parts of
the frame buffer and stores that in memory. When it collects
a full frame, the program writes into an instance of BRAM
in the receiver board. After this has been completed
successfully, the hardware of the receiver board accesses
this data and displays it to the receiver's VGA display.

II. Milestones

As part of creating our design, milestones were
set by our team as part of the project proposal. The
milestones are presented below for reference.

Milestone 1 (25%): Interface Camera with the FPGA
using I2C protocol. The goal for this milestone is get the
FPGA communicating with the camera by following the
I2C protocol so we can begin processing the raw data
coming from the camera.

Milestone 2 (50%): Networking. For this milestone the
main goal is to sort out the networking portion of the
project. At this point the fpga should be able to
communicate with a computer in the network and be able to
start to send the pixels that have been processed.

Milestone 3 (75%): Achieve raw live-feed video on VGA
display. For this milestone, our project should be capable of
displaying a very raw version of the live-feed. The display
should be recognizable but will probably contain glitches
and issues that make it behave weirdly.

III. System Block Diagram



Fig. 1: System Block Diagram

IV. Resource Budget

One of the largest limitations present throughout
the design was memory usage. While the DE1-SoC FPGA
does have the ability to access large reserves of memory
stored off-chip, this option presents additional challenges.
One of the notable challenges is that in order to access the
FPGAs SDRAM it requires one to deal with different clock
domains. This challenge of crossing clock domains was
troublesome enough in the transfer of data from the FPGA
to HPS that it was chosen to instead exclusively work off of
the FPGA on-chip memory.

The decision to exclusively utilize on-chip
memory saves our design from further having to deal with
separate clock domains but comes at the cost of having to
operate the design using limited memory resources. The
DE1=SoC has a total of 4,450 Kbits of embedded memory
available for use in our hardware designs. The design
heavily relies on using a frame buffer to send over data
either to the network or to the VGA display. The next
question presented by this limitation was regarding how
large to make the frame buffer. This required some
calculations that considered the resolution of VGA, the
pixel depth, and bandwidth restrictions which are depicted
in table 1.

As a result of these calculations it was determined that
option 1 was ideally the image quality that was desired for
the display output from the VGA display. As can be shown
in the table above, this option is one of the more memory
costly options but our group felt that an 8 bit pixel depth
provides a nice image whereas smaller pixel depths resulted
in poor quality images which can be seen in the figure
below.

This option was also chosen due to the fact that
the resulting bandwidth was acceptable due the FPGAs 1
gigabit ethernet port. It is worth noting however that due to
the frame's resulting size it was only possible to store a
single frame in memory.

Fig 2: Image shows the effect of pixel depth on the image
quality in black and white.1

V. Design: Hardware

OV7670 Camera:
We use an OV7670 VGA CMOS Camera Module

as our input image. Luckily, the camera module comes with
image processing so that the data we receive from the
device in hardware is already conditioned. We can
additionally specify certain channels and parameters. We’ve
found that if we want to send a grayscale image, it is
sufficient to use the yellow channel using a YCBCR
standard which gives us the luminance of the image. To do
so, we sample every other byte of camera output. It’s to be
noted that because of the image processing module on
board, every pixel we receive from the camera comes in
two bytes.

1 Grayscale Resolution
https://hamamatsu.magnet.fsu.edu/articles/digitalimagebasi
cs.html

https://hamamatsu.magnet.fsu.edu/articles/digitalimagebasics.html
https://hamamatsu.magnet.fsu.edu/articles/digitalimagebasics.html


Fig. 3: OV7670 Block Diagram2

Unfortunately, using this camera module is not as
simple as “plug-and-play”. In order to receive any sort of
output, we must first give the camera module an
initialization sequence. To further complicate this task, the
module does not speak a widespread standard, instead
using a protocol called SCCB which differs from I2C in a
few important respects such that communication is not as
simple as using an I2C peripheral. We’ve found and verified
an initialization module for the OV7670 camera which
functions essentially as a state machine, configuring each of
the camera’s 201 configuration registers.

Fig 4. Timing diagram of the OV7670 camera
After configuring the module, we receive a few

signals, not least of which are the VSYNC and PCLK
outputs which pull high at the beginning and end of camera
data and denote the timing of incoming camera data,
respectively.

Although the pixel clock of the camera is 25Mhz,
because we sample every other pixel, our effective rate is
12.5Mhz.

Transmitter FPGA Main Logic:
The transmitter FPGA main responsibility is

taking in data from the camera and storing it into BRAM
and then simultaneously displaying that data in BRAM to a
VGA display and sending the frame to HPS via the Avalon
bus. We utilize the VGA counter module in lab3 and
modify it to output the endOfField signal as well. All in all,
besides the camera initialization module, the top module
relies on three finite state machines to function.

The sequence of events proceeds as follows. On
start-up, we initialize the OV7670 camera as described
above. The first state machine keeps track of the camera
pixel count. Based on the HS, VS, and PIXEL clock from
the camera, we increment the pixel count every time we get
a valid byte. This pixel count is then reset to zero when we
go from VS low to high. This pixel is needed later to decide
when to write to BRAM again after reading from it.

2 OV7670_2006,
http://web.mit.edu/6.111/www/f2016/tools/OV7670_2006.
pdf

The second state machine, shall to be referred to
as the write FSM from now on, controls the writing
operation to BRAM. It almost mirrors the first state
machine. It differs in one additional state where it waits for
read FSM to be done reading from BRAM to the VGA
display. When we are done reading from BRAM, we need a
way to know where in the frame the camera is outputting,
which is why we keep track of the pixel count in the first
FSM. In this write FSM, after waiting for the read FSM, we
have to wait again for pixel count to reset and now we’re in
sync with the first FSM and we can begin to write a
complete new frame to BRAM.

In the last FSM, we wait for the write FSM to
finish writing. Then most likely the VGA counter is
somewhere in the frame and not necessarily in the
beginning of the frame. The read address is determined by
the hcount and vcount calculated by the VGA counter.
When it’s done reading this ‘partial’ frame, we will reset
the read address and increment the read address as the pixel
clock is going as long as the VGA counter is in the active
pixel area. Doing this will result in a less jittery video feed.

State Machine - Transmitter:

Fig 5: Read-Write State Machines - Transmitter
FPGA

BRAM:
In an effort to keep things simple, we use an

inferred BRAM implementation introduced during lecture.
We have an address for every pixel in a frame (640 x 480 =
307,200) where each pixel is represented by 8 bits. It is
convenient to have the system set-up this way since it
allows us to avoid using SDRAM and its associated
challenges and is made possible thanks to the bit sizing

http://web.mit.edu/6.111/www/f2016/tools/OV7670_2006.pdf
http://web.mit.edu/6.111/www/f2016/tools/OV7670_2006.pdf


chosen allowing us to fill one complete frame.
Furthermore, the address indexing into memory also serves
as the pixel count.

VI. Hardware / Software Interface

The interfacing of the design's hardware and
software components was done by utilizing the skeleton
code provided for lab 3. Not only did it provide a base code
to build upon but it also had an existing hardware module
for interacting with the VGA display. The interfacing was
done by editing the lab 3 driver to be able to receive /
transmit data necessary to send over our frame.

On the transmitter FPGA, the HPS will just read
from the FPGA, 32 bits at a time. We embedded the pixel
count (19 bits) and the data (8 bits) so that we could build a
frame buffer in software properly. For whatever reason the
pixels skip when we read, we could still retain the spatial
integrity of the image this way.

As for the receiver FPGA, the lab 3 code was
modified to be able to write a 32 bit piece of data over the
avalon bus as well. Contained within the 32 bits were 8 bits
containing the color of the pixel and 19 bits containing the
write address which were both fed from software. The form
of this data which can be viewed in the figure below.

Fig 6. Bit ordering of data sent to receiver hardware from
software

VII. Software
Transmitter FPGA:

We utilize some boilerplate UDP socket
programming. We determine that sending a packet of size
508 bytes will result in the least amount of packet loss so
that’s how big our packets are. After getting a whole frame
from hardware and storing it in a frame buffer, we send it
over the socket, 508 bytes at a time until the last one, which
is 368 bytes.

Receiver FPGA:
Similar to the transmitter FPGA, UDP socket

programming was used. The receiver FPGA waits for a
connection from the transmitter and once it receives a
connection the receiver writes the packet’s data into a
buffer that is of size of a frame which is 640x480 bytes.
The receiver continuously writes to the buffer until it is
full. Once the buffer is full the buffer is then saved into the
BRAM which then gets sent over to the VGA display. This
process repeats until either the transmitter or receiver stops
running.

VIII. Results

Our submitted design accomplishes many of the
milestones we set out to complete with some complications
present. Our design at the time of presentation successfully
managed to set-up the camera for black and white video
capture. The sender FPGA was able to process and display
the image using a VGA module repurposed from lab 3 to
be able to achieve live-video feed. Our design was also
capable of communicating over the network to a receiver
FPGA utilizing a UDP network protocol written into the
FPGA HPS system. Software-Hardware interfaces were
also successfully implemented utilizing drivers that were
set-up to transmit the pixel color data. The receiver FPGA
essentially utilized the same hardware resources of the
sender with some modifications. These modifications
accounted for the fact that data was instead received and
stored to on-chip memory and then displayed onto a remote
VGA display. Unfortunately our design isn’t without
complications that our team was unable to resolve and a
later section is entirely dedicated to discussing these.

IX. Team Member Contribution

Michael Lee:
● Receiver Hardware
● Receiver Hardware/Software Interface
● Receiver Software
● Report

Kenny Martinez:
● Networking
● Receiver Hardware/Software Interface
● Receiver Hardware
● Receiver Software

Carlos D. Nunez
● Receiver Hardware
● Receiver Hardware/Software Interface
● Receiver Software
● Powerpoint/Report

James Phan:
● Interfacing Camera
● Sender Hardware
● Sender Hardware/Software Interface
● Sender Software
● Report

Patricio Tapia:
● Interfacing Camera
● Networking



● Sender Hardware
● Sender Software

X. Complication / Lessons
Learned

During the creation of our design project we
encountered a few complications along the way. One of the
most notable issues present in our design is the flickering
that is present in our local live-feed. The exact cause of this
still remains unknown but a few possible solutions were
brainstormed such as possibly reducing the memory used
per frame in order to store multiple frames and hopefully
resolve the flickering. The second notable issue was that in
the process of sending data to HPS from the sender FPGA,
the frame was not being correctly transmitted resulting in
pixels being lost . This resulted in a poor quality image that
can just barely be recognizable from the original image.
The last known issue that negatively impacted the design
was the networking. When sending a frame over the
network to the receiver FPGA, the frame would arrive
distorted. A proposed solution for this was that instead of
just sending the pixel color data, the frame should have also
sent information regarding its address. This would have
made it easier to build the frame on the Receiver even if
information arrived out of order since the address could be
referenced.

Fig 8. Depict issues present when transferring over pixel
data. As a result the original image is barely recognizable.

Fig 9. Distorted frame received over the network on
receiver fpga.

Despite these setbacks our team was grateful for
the opportunity to learn more about such a readily available
feature as transmitting live-video feed. This project left all
of us with a great appreciation for this common feature due
to the difficulty and struggles we faced in the many parts of
the project from interfacing the camera to sending even just
sending one frame over the network. The biggest advice
our team can give to teams in the future is to plan well in
advance. Careful planning can make a major difference and
avoid the pitfall of trying to create a design that is
physically unrealizable. In our case some limitations didn’t
become apparent until late into the project. Lastly, we
cannot stress the importance of the fact that there are many
resources available, our project was by no means
revolutionary and parts of it have been done and handled in
much more efficient ways. Teams should research as much
as they can and become aware of all the options available
to them as well as not be afraid to seek help from the
teaching assistants or Professor Edwards.

XI. Conclusion

In conclusion, our design was able to
set-up the main components including the
camera interface, frame memory storage, vga
output and networking components. Our design
was capable of displaying a live-video feed as
well as capable of communicating over a UDP
network protocol. Unfortunately as was
discussed in our report, our design is not free of
bugs that cause issues from flickering video to
distorted video transfer. Future work should be
focused on redesigning the memory storage and
embedding address with the pixel color
information to prevent these complications.



XII. Source Code List

Featured below is a list of the files that
were created/modified for use in our project.
Files that were created by qsys or quartus were
not included in the list. Some may be found in
our tar file that was uploaded such as the top
module just for reference.

Sender FPGA Hardware:
● vga_ball.sv
● cam_vga.sv
● clk_div.sv
● OV7670_config.sv
● SCCB_interface.v
● vga_counter.sv

Sender FPGA Software:
● hello.c
● sender.c
● cam_vga.c
● cam_vga.h
● vga_ball.c
● vga_vall.h

Receiver FPGA Hardware:
● vga_ball.sv

Receiver FPGA Software:
● hello.c
● server_socket.c
● vga_ball.c
● vga_vall.h


