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1. Introduction 

FPGAs have gained popularity as an accelerator for neural network inference due to their high-

performance computing capabilities and flexibility. FPGA-based hardware accelerators can achieve 

high throughput and low latency, enabling real-time inference and training of large-scale models. 

They have shown promising results in energy efficiency and outperforming GPU-based solutions in 

terms of performance per watt. For our project, we plan to use the given SoC as a CNN (Convolution 

Neural Network) accelerator for a typical image recognition task.  

CNN is a standard neural network structure that is particularly useful for image classification tasks. 

Its structure usually consists of a combination of convolutional layers, fully connected layers, pooling 

layers, flattening layers. The recognition results could be obtained by comparing the neuron values 

in the output layer. The core operation in CNN is Multiply and Accumulate (MAC), which is 

essentially doing multiplication and addition repetitively. Dedicated MAC module could complete 

this process efficiently. Our idea is to design a multi-MAC neural processing unit to realize 

parallelism during the inference process of CNN, hence the inference could be accelerated.  

 

2. Milestones 

1. CNN architecture prototype in MATLAB and implementation research 

2. FPGA hardware upgrade to include memory blocks and optimized interface 

3. Software controller development and overall system integration with benchmarking 

 

3. Overall Block Diagram 

 
Figure 1. Overall block diagram of the system 

The overall system block diagram of our project is shown in Figure 1. The input to the accelerator 

will be pre-stored image pixel value, network weight, network bias or the computation results from 

last layer. The hardware will take the control signals (instructions) from software (HPS) and fetch the 

input values from corresponding memory addresses until all the computation is completed. The output 

results of the neural network (results of an image recognition task) will be displayed directly by the 

hardware (VGA driver) on the VGA display in text format or simply represented by numbers and 

displayed on 7-segment LEDs. 

In terms of memory, the main idea is to increase the IO bandwidth as much as possible. Usually the 

IO bandwidth is the ultimate limitation of inference speed, rather than the amount of hardware 

resource. The weights, biases, input image, temporary computation results to/from the hardware will 

to be stored to carefully allocated memory blocks so that the reading/writing speed will be as fast as 

computation. The detailed description of memory operation is included in 10 Memory Allocation 

and Operation. 
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4. Neural Network Structure 

 
Figure 2. CNN architecture of our algorithm 

 
Figure 3. Network specification in TensorFlow 

A typical CNN architecture is chosen for our project as shown in Figure 2. Totally there are four 

possible operations in the algorithm, 2D convolution, maxpooling, image flatten, fully connected 

layer. All of them are standard CNN operations. Fashion MNIST dataset will be used to benchmark 

the performance of our system, thus the input matrix size is (30,30,1). The Fashion MNIST has 10 

output possibilities thus the final output layer has 10 neurons. The network structure in the middle 

should be clear as shown in Figure 2 and 3. This architecture achieves ~95% of accuracy when tested 

in TensorFlow for the fashion MNIST dataset, which is high enough to be implemented as a course 

project. 

(*Note: originally we were trying to accelerate an architecture called MobileNet, but we simplified 

our network structure to this typical CNN architecture for the feasibility concern of the project.) 

 

5. Memory Estimation 

The memory usage of our CNN architecture could be calculated as follows. This estimation is based 

on the design choice of quantizing all weights, biases, intermediate neuron values to 8-bit fixed 

number representation. All numbers are signed fixed point numbers in this project and the decimal 

point is always in the middle. For example for an 8-bit number, there is one sign bit, three integer bits 

and 4 fraction bits. 

𝐶𝑁𝑁 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠
= ((3 × 3 + 1) × 32 + (3 × 3 × 32 + 1) × 32 + (3 × 3 × 32 + 1) × 32) × 8 𝑏𝑖𝑡

= 18816 × 8𝑏𝑖𝑡 = 18816 𝐵 
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Eqn. 1 

 

𝐹𝐶 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 = (512 × 32 + 32 + 32 × 10 + 10) × 8 𝑏𝑖𝑡 = 16746 𝐵 Eqn. 2 

 

𝑀𝑎𝑥 𝑑𝑎𝑡𝑎 𝑚𝑒𝑚𝑜𝑟𝑦 𝑜𝑓 𝑡𝑤𝑜 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑙𝑎𝑦𝑒𝑟𝑠 = (12 × 12 × 32 + 4 × 4 × 32) × 8 𝑏𝑖𝑡 = 5120 𝐵 
Eqn. 3 

 

𝐼𝑛𝑝𝑢𝑡 𝑝𝑖𝑐𝑡𝑢𝑟𝑒 = 30 × 30 × 8 𝑏𝑖𝑡 = 900 𝐵    Eqn. 4 

 

Which means the memory requirement for our project is: 

𝑇𝑜𝑡𝑎𝑙 𝑚𝑒𝑚𝑜𝑟𝑦 = 18816 𝐵 + 16746 𝐵 + 5120 𝐵 + 900 𝐵 = 41582 𝐵 ≈ 42 𝑘𝐵 Eqn. 5 

This rough estimation is much smaller than the total amount of block memory (BRAM) in the FPGA 

(500 kB), indicating that no external SDRAM is needed.  

 

6. Software and Hardware Interface 

The software and hardware interface is responsible for passing the data from HPS to FPGA hardware 

to process. In this project this interface is straightforward. All 32-bit Avalon bus is used to pass the 

image, weights and biases data before all the computation. These 32 bits are connected to two 32-bit 

registers in hardware, namely “data_reg” and “control_reg”. Two functions called “set_data” and 

“set_control” are developed in software to pass data to “data_reg” and “control_reg”. 

The whole process will begin when “set_control” function is invoked. The current data on the Avalon 

bus will go to “control_reg” and configure the accelerator to prepare for the incoming data. From the 

next cycle on, the “set_data” function will be invoked so that the data on Avalon bus will go to 

“data_reg”. The built-in FSM in the accelerator will automatically allocate the incoming data to an 

appropriate memory block with an appropriate address. 

After all memory blocks are filled with correct data, the “set_control” will be invoked again to let the 

inference begin. Both “set_control” and “set_data” will be disabled afterwards. The recognition result 

will be fed back to software after inference. The recognition results will also be directly displayed 

through hardware, specifically displayed on 7-segment LEDs. 

 

7. Detailed Block Diagram for Top-level Hardware 

The detailed block diagram for top-level hardware is shown in Figure 4 below. The Mem_Write 

module will be directly connected to the Avalon bus from HPS to receive all required data including 

images, weights, biases for performing inference. This module is also connected to 9 memory blocks, 

specifically 4 image rams (each contains one fourth information of one image), 4 dense rams (each 

contains one fourth of parameters for dense inference layer) and 1 convolution ram (contains all 

parameters for all convolutions). Mem_Write module will take the received data from HPS and 

allocate all image pixels and parameters to appropriate ram at appropriate addressed. A dedicated 

FSM will handle the storing sequence and provide controls signals to Mem_Write. 
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Figure 4. Top-level hardware block diagram for CNN accelerator 

Once these data are properly stored in rams, the inference will begin and the Mem_Read module will 

begin to read data from those 9 memory blocks. Detailed writing and reading process are explained 

in 10 Memory Allocation and Operation section. The data from 9 memory blocks will be sent to 

NPU for processing. There are four parallel MAC channels and their inputs are DA/DB, DC/DD, 

DE/DF, DG/DH. All outputs retrieved from NPU will be in 8-bit format and these outputs are 

feedbacked to Mem_Read module as intermediate results or final results. All intermediate results will 

be stored to 4 Result Mem blocks and these data are accessible by Mem_Read module to perform 

convolution/dense inference for next layer. Similar to Mem_Write, there is also a dedicated FSM to 

control all reading/writing sequence for Mem_Read. 

 

8. Architecture Specification of NPU 

The top-level architecture consists of three blocks, a computing core, an FSM and an SSFR as shown 

in Figure 5. The computing core is responsible for taking inputs from memory blocks and generating 

MAC results to the output. Relevant control signals for driving the computing core will be generated 

automatically from FSM. The SSFR stores some configuration options of the core and is specified in 

Table 1. The detailed implementation of computing core (NPU core) is shown in Figure 6. The 

architecture and state transition table of FSM are shown in Figure 7, Table 2 and Table 3. The 

operation timing diagram is shown in Figure 8. 

In brief, this computation core has four MAC channels that could operate independently. Each MAC 

module takes two 8-bit values as inputs and generates a 16-bit value as output. The output of MAC 

is connected to a ReLU module as hardware execute of the active function. The ReLU function could 

be expressed by the equation below. The user can choose to bypass the ReLU function or not for each 

channel by configuring SSFR.  

𝑅𝑒𝐿𝑈 𝑂𝑢𝑡𝑝𝑢𝑡 = {
max(𝑖𝑛𝑝𝑢𝑡, 0)   𝑖𝑓 𝑅𝑒𝐿𝑈_𝐵𝑦𝑝𝑎𝑠𝑠 = 0

𝑖𝑛𝑝𝑢𝑡, 𝑖𝑓 𝑅𝑒𝐿𝑈_𝐵𝑦𝑝𝑎𝑠𝑠 = 1
  Eqn. 6 

There are multiple output options for the user to choose, depending on the requirement. As specified 

in Figure 6, there are 7 different output choices as the inputs to the output MUX. Option 0 is the 
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output from the FIFO, which will automatically record all outputs from PISO_OUT if enabled. Option 

1 is the output from PISO_OUT, which will provide the original 16-bit output from all ReLU module 

8-bit by 8-bit in sequence. Option 2 is the output from 16-bit to 8-bit converter, which will compress 

16-bit number down to 8-bit number with automatic overflow, underflow, rounding operation. Option 

3 is the index from comparator, representing the index of the largest number to the comparator so far 

(after last reset operation). Option 4/5 together represent the 16-bit largest number to the comparator 

based on the last 4 inputs. Option 6 is the 8-bit largest number to the comparator based on last 4 inputs, 

which is obtained using a built-in 16-bit to 8-bit converter in comparator. 

The required operation timing and output timing for each option are covered in the timing diagram in 

Figure 8. The general idea is that the user should configure SSFR after each MAC operation to select 

the desired output format. EN_CONFIG pin should be pulled high when changing the values of SSFR, 

otherwise the content will remain unchanged.  

The inference process mainly utilizes three options. It uses Option 6 to generate the result from one 

convolution + maxpooling operation for one neuron value. It uses Option 2 to generate the neuron 

values in dense layers as there is no maxpooling operation in dense layer. It uses Option 3 to generate 

the final recognition from the final output layer. No 16-bit result will be retrieved from computing 

core, indicating that the entire computation only takes 8-bit inputs and generate 8-bit outputs, but the 

computation is done in 16-bit precision. 

The SSFR values for each layer are: 

− conv2d1 + maxpooling 1: 1100_0001_0010_1000 

− conv2d2 + maxpooling 2: 1100_0001_0010_1000 

− conv2d3: 0100_0000_1011_0000 

− dense1: 0100_0000_1011_0000 

− dense2: 0111_1111_0010_1000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 

 
Figure 5. Top level architecture of accelerator 

 

Table 1. Specification of each bit of SSFR 

Stationary Special Function Registers (SSFR[15:0]) 

SSFR[15] SSFR[14] SSFR[13] SSFR[12] SSFR[11] SSFR[10] SSFR[9] SSFR[8] 

SEL_OUT[2] SEL_OUT[1] SEL_OUT[0] BYPASS_ReLU1 BYPASS_ReLU2 BYPASS_ReLU3 BYPASS_ReLU4 EN_COMP 

 

SSFR[7] SSFR[6] SSFR[5] SSFR[4] SSFR[3] SSFR[2] SSFR[1] SSFR[0] 

RST_COMP EN_FIFO RST_FIFO EN_CONV RST_CONV Unused 

 

Default Values (if reset) 

SSFR[15:8] SSFR[7:0]       

00100000 10101000       
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Figure 6. Detailed block diagram of the NPU core 
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Figure 7. FSM architecture 

 

Table 2. FSM_ACC Transition Table 

FSM_ACC State Transition Table (Architecture V8) 

Current 

State 

Next State Output 

EN_FSM=0 

CTR_OUT=0 

EN_FSM=0 

CTR_OUT=1 

EN_FSM=1 

CTR_OUT=0 

EN_FSM=1 

CTR_OUT=1 
EN_BUF_IN CLR_BUF_IN EN_MAC RST_MAC CLR_PISO_OUT 

EN_ReLU 

ACC_FLAG 
ACC_FLAG 

=0 

ACC_FLAG 

=1 

IDLE IDLE IDLE BIAS BIAS 0 1 0 0 1 0 0 0 

BIAS ACC ACC ACC ACC 0 1 1 1 0 0 1 No change 

ACC ACC LAST ACC BIAS 1 0 1 0 0 0 0 1 

LAST WAIT WAIT WAIT WAIT 0 0 1 0 0 1 1 No change 

 

 OUT_DONE=0 OUT_DONE=1  

WAIT WAIT IDLE 0 0 0 0 0 0 0 No change 
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Table 3. FSM_OUT Transition Table 

FSM_OUT State Transition Table (Architecture V8) 

Current 

State 

Next State Output 

EN_ReLU=0 EN_ReLU=1 Shift/~LD_OUT EN_PISO_OUT OUT_DONE WR_EN 

OUT_IDLE OUT_IDLE OUT_S1 1 0 0 0 

OUT_S1 OUT_S2 0 1 0 0 

OUT_S2 OUT_S3 1 1 0 1 

OUT_S3 OUT_S4 1 1 0 1 

OUT_S4 OUT_S5 1 1 0 1 

OUT_S5 OUT_S6 1 1 0 1 

OUT_S6 OUT_S7 1 1 0 1 

OUT_S7 OUT_S8 1 1 0 1 

OUT_S8 OUT_S9 1 1 0 1 

OUT_S9 OUT_IDLE 1 0 1 1 
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Figure 8. Computing core operation timing diagram
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9. MATLAB Golden Model 

A MATLAB golden model is constructed to accurately model the computation process of the 

accelerator. It could also verify how much loss will be brought by 8-bit quantization and whether the 

accelerator could still successfully classify the images, with respect to the performance of the model 

in TensorFlow, where all numbers are represented by 32-bit floating numbers. All image files, model 

weights and biases are obtained from TensorFlow and quantized in MATLAB to 8-bit. The quantized 

files are also exported for FPGA to use. 

Four general-purpose functions called conv2d, maxpooling2by2, dense and flatten are developed to 

support the matrix multiplication in the inference process. MATLAB has built-in support for fixed-

point number representation and operation precision, but no support for fixed point convolution, thus 

these customized layer operation functions are developed from scratch. With these functions, the 

inference process of the model could be represented by Figure 9. 

 
Figure 9. MATLAB representation of all layers in the model with custom functions 

The intermediate results such as “conv2d1_result” and “pooling1_result” are used to provide golden 

reference to the accelerator operation. These results are also compared to the results from TensorFlow 

to verify how quantization is affecting each layer and how error is accumulating layer by layer. 8-bit 

quantization results of each layer are compared to 32-bit quantization results in Figure 10. The 

average RMS error here represents the error between a single neuron derived in MATLAB and the 

corresponding neuron in TensorFlow quantized using the same precision. It is clear that lower 

precision will cause error regarding ideal results, and the error will accumulate layer by layer. If the 

quantization goes to 32-bit, i.e., a very high precision, the error will vanish. 

 
Figure 10. Quantization error comparison 

Using 8-bit quantization for weights and biases, and 16-bit computation precision, the recognition 

results from the golden model could be represented by the confusion matrix below: 
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Figure 11. Confusion matrix of recognition results from MATLAB golden model (100 images) 

According to the confusion matrix, 8 images are misclassified and the rest 92 images are correct, 

indicating that in this test the model accuracy is 92%. This result could prove that the quantization 

precision chosen for the accelerator does not degrade accuracy very much, as the original accuracy 

in TensorFlow is approximately 95%.  

 

10. Memory Allocation and Operation 

To realize four channel MAC parallelism, the memory allocation and reading operation are specially 

customized to reach high efficiency and satisfy the timing requirement of NPU. This section is 

divided into convolution layer/maxpooling layer, flattening layer and dense layer. 

10.1. Convolution layer/Maxpooling layer 

These two layers are grouped together because they are always adjacent layers in our CNN and the 

NPU is designed to complete two layers together in an efficient manner. Assuming the input to a 

convolution layer is a 2D image shown in Figure 12. The current convolution kernel is 3 by 3 and 

the maxpooling window is 2 by 2, indicating that the rectangle in each color in Figure 12 represents 

a 3 by 3 convolution region and the convolution results from all four of them will be the inputs to a 2 

by 2 maxpooling region.  

 
Figure 12. Example of a 2D image (10 by 10, single channel) 
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To complete this convolution and maxpooling operation together, data should be fed into NPU in the 

following sequence (4 data at a time for four channels): D11/D12/D21/D22, D12/D13/D22/D23, 

D13/D14/D23D24…..D33/D34/D43/D44. Totally 9 times. Every 4 by 4 region will follow this 

sequence. Since the image will be flattened when stored in ram and the address for each data will be 

very irregular based on this sequence, the following approach is adopted: 

 
Figure 13. Temporary buffer approach for generated the required sequence 

Each 4 by 4 region could be divided into 4 2 by 2 regions. The data at each corner of 2 by 2 region 

will be stored into one ram, thus a total of four rams (so we have 4 image rams). For example in this 

4 by 4 region, D11/D13/D31/D33 will be stored into one ram in sequence, D12/D14/D32/D34 will 

be stored into another ram in sequence, and so on. When reading these four rams, four data could be 

obtained at one time and they are flattened and stored into one array, as shown in the middle array in 

Figure 9. When the original 4 by 4 region is transformed into this flatten array, the reading patten 

will be the same for all 4 by 4 regions. It will always be the purple rectangle, the purple dot rectangle, 

the orange rectangle and so on.  

Each of these 4 by 4 regions will generate one data after convolution and maxpooling. The following 

figure could explain how four 4 by 4 regions are transformed into 4 results, and the relative positions 

of these four results in the new array. 

 
Figure 14. The transformation of four 4 by 4 regions after convolution and maxpooling 
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By using this methodology, all convolution and maxpooling layers could be finished and the timing 

could satisfy the requirement of NPU. 

 

10.2. Flattening Layer and Dense Layer 

The logic for flattening operation is straightforward. The result from the final convolution layer is a 

4 by 4 by 32 matrix. As there is only 1D convolution in dense layer, it is intuitive to flatten the result 

regarding the sequence of width, height, depth. To still achieve highest parallelism in dense layer, the 

parameters (weights and biases) for each dense layer need to be stored in four different rams, so we 

have four dense rams as shown in Figure 5 . Since four different sets of parameters are convolving 

with respect to the same result from final convolution layer (4 by 4 by 32, thus 512 data), only one 

Result_Mem is required to store all 512 data. 32 neuron values will be derived from the first dense 

layer. These 32 values, again, will be stored only in one of the Result_Mem for the derivation of final 

10 output neurons. There is no flattening required for the second dense layer and the 1D convolution 

logic is identical to the first dense layer. It should be noted that the NPU computing core only supports 

4-channel parallelism, but there are 10 output neurons in the final output layer. Two dummy output 

neurons are added so that in total there are 12 output neurons, thus can be calculated as 4+4+4. These 

dummy neurons are set to smallest value (10000000) hence will not affect the recognition result. 

 

11. Accelerator Evaluation and Results 

In the evaluation section, an image of “ankle boot” from Fashion MNIST dataset is used for 

illustration purposes. The image is shown in Figure 15 and has the dimension of 30 by 30 pixels. 

Originally all pixels are in the range of 0 to 255. They are normalized to the range of 0 to 2 in Figure 

15 to avoid saturation issue during computation, since the 8-bit binary representation in accelerator 

can support -8 to 7.9375. 

The representation of 10 classes follows the sequence of “'T-shirt/top', 'Trouser', 'Pullover', 'Dress', 

'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'”, thus the final recognition result should be 10, 

i.e., the last class. 

 
Figure 15. An example of ankle boot image for evaluation 

 

11.1. Data transfer between software and hardware memory 

The waveform of data transfer is shown in Figure 16 and Figure 17. As mentioned in the memory 

design section, there are totally 4 image rams + 4 dense rams + 4 result rams + 1 conv ram. The 

Figure 16 showed the process of transferring the image data. It could be seen that the current state is 
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“WRITE_FOUR”, indicating the image data are being copied to image rams. The writing ports of 

image rams (data_image0/ data_image1/ data_image2/ data_image3) keep changing as expected. The 

Figure 17 showed the process of transferring weights and biases to parameter rams (dense rams and 

conv ram). During the state of “WRITE_SEQ_CONV”, the weights and biases of all convolution 

layers are being imported to the conv_ram. It could be seen in Figure 17 that the “conv_ram_addr_a” 

and “data_conv” keep changing during this state. In the next state of “WRITE_FOUR_DENSE”, the 

weights and biases of all dense layers are being inputted into the dense_rams. Similarly the 

“dense_ram_addr_a” and “data_dense0/1/2/3” keep changing during this state. 

 
Figure 16. Data transfer of image data 

 
Figure 17. Data transfer of convolution/dense layer parameters 

 

11.2. Results of conv2d1 and maxpooling1 

The waveform of conv2d1 and maxpooling1 is shown in Figure 18. The data changing density is 

very high in the figure so not everything is visible. It could be seen from “channel32” that the 

accelerator is convolving from channel 1 to channel 32. The “current_state” is “LAYER12” for this 

section. It can also be observed that the data from conv_ram and image_rams are being fed into the 

NPU for computation and “D_OUT” port of NPU is generating outputs. These outputs will be stored 

to result_rams as temporary results. 
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Figure 18. Results of first convolution and first maxpooling layer 

 

11.3. Results of conv2d2 and maxpooling2 

The waveform of conv2d2 and maxpooling2 is shown in Figure 19. This convolution process is very 

similar to the results in Figure 18. The convolution weights and biases, together with the results from 

previous layer, are fed to NPU for computation and the results from “D_OUT” will be stored to 

result_rams. 

 
Figure 19. Results of second convolution and second maxpooling layer 

 

11.4. Results of conv2d3 

The waveform of conv2d3 is shown in Figure 20. There is no maxpooling layer after this convolution 

so the raw data after convolution are directly stored into result_rams through “16-bit to 8-bit converter” 

inside NPU. Similarly, there are still 32 channels (32 filters) in this layer so the channel index keeps 

increasing. The “current_state” is LAYER5 for this layer. Since the results of each layer will be 

generated sequentially from NPU, the outputs are already flattened and only need to be stored to 

appropriate rams with appropriate addresses.  
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Figure 20. Results of third convolution layer 

 

11.5. Results of dense1 

The waveform of dense1 is shown in Figure 21. The inference process of each dense layer is just 

many 1D convolution, which is much more straightforward than convolution layers. The 1D 

convolution is performed by fetching data from result_rams (results from previous layer) and 

dense_rams (weights and biases). There are four MAC channels in NPU thus four neurons could be 

derived together. It could be seen from Figure 21 that the “dense_bias_count” changes from 0, to 4, 

8, ……until 32, indicating four biases for four channels are used in each inference cycle. The current 

state of this layer is called “DENSE”. It could be seen that the data switching density in the screenshot 

region, such as the switching activity of “EN_FSM” is much lower now, compared to convolution 

layers. This is because there will only be 32 output neurons for this layer. 

 
Figure 21. Results of first dense layer 

 

11.6. Results of dense2 and final recognition 

The waveform of dense2 and final recognition are shown in Figure 22. Now the waveform density 

is even lower and everything is visible. The 1D convolution of dense2 layer is same as dense1 layer, 

though the output option is different. The output of dense2 layer is obtained from the “index” port of 

automatic comparator in NPU, while the output of dense1 layer is obtained from “16-bit to 8-bit 

converter” in NPU. The automatic comparator can directly compare the values of 10 output neurons 

and choose the index of the largest neuron, i.e., the recognition result. As mentioned before, this 
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example is an Ankle boot and the recognition result should be 10. It could be seen from Figure 22 

that the final value of “D_OUT” is 10, which represents the correct index. 

 
Figure 22. Results of the second dense layer 

 

12. Member Contribution and Advice for Future Projects 

12.1. Tianchen Yu 

I am responsible for the RTL development of NPU (computing part) and construction of MATLAB 

golden model. I am also responsible for all documentation of NPU and writing the entire report. I 

used the MATLAB model to verify the performance of my NPU and accurately model every single 

output from NPU. The major difficulty for MATLAB model development is to fully understand the 

exported parameters format from TensorFlow. Because MATLAB does not have built-in support for 

fixed-point 2D convolution, every layer operation must be developed from scratch. Although 

MATLAB provides very good support for matrix operation, careful attention needs to be paid for any 

data manipulation, such as the multiplying priority for width, height, depth, filter index etc. The raw 

data from TensorFlow may follow a very efficient pattern, but at least it is not intuitive. A few 

attempts are needed to fully figure out the data format from TensorFlow. One suggestion is that the 

future group could use a very accurate quantization first (such as 32-bit) to figure out the data format 

based on an error estimation (such as the RMS method I used). If everything is properly aligned the 

error will be very close to zero, or even just zero. Then the chosen quantization level could be applied 

to obtain realistic performance. 

The trickiest part of NPU design is the alignment of all timing and the collaboration of all modules. 

The nature of hardware accelerator requires a very efficient design of timing to ensure most cycles 

are dedicated for computing, rather than memory operation or even waiting. This means every module 

needs careful alignment so that the overall throughput can be maximized. Although the clock 

frequency is limited to 50 MHz in this platform, the entire NPU follows a pipelined design that could 

be potentially deployed at a much higher frequency for a higher throughput. Another challenging part 

of NPU design is the binary number operation, particularly during 8-bit to 16-bit transition or 

backward case, or binary number multiplication. In our design we replicate the addition, 

multiplication, underflow/overflow control, rounding operation logic from MATLAB (one of typical 

operation logics from MATLAB) so that everything could be precisely modelled. Not all of these 

operations are easily achievable in Verilog design. Operations such as multiplication and data 

compression require lots of tuning to get fully correct results. 

 

12.2. Haichun Zhao 

I was participating in the design and implementation of memory management.  In this project, we had 

designed 13 memory modules with various sizes and functionality. It was crucial to have memory to 
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execute in our designed sequence in both storing: store image data, store bias + parameters and 

executing: read image data and corresponding parameters, write back, read other data and parameters, 

etc. We developed a unique reading/writing mechanism that fit our purpose and current architecture. 

I wrote the state machine for memory management logic to ensure this process is done properly 

without error in both stages. Both memory_write and memory_read files had undergone several 

revisions in order to achieve the correct results. 

If we had more time, this accelerator could be more flexible, for example taking different sizes of 

pictures and permanently storing the parameters in the memories so we do not have to feed the 

parameters first for every picture. We could also reduce the memory size required since some 

memories kept slightly larger size for consistency and ease of development. 

 

12.3. Qixiao Zhang 

My job in this project is to design the dataflow of different memories and data feeding from block 

RAM to the NPU computation part. Because the NPU cannot store any information and it needs data 

consistency to run effectively, we must design a specific way to transfer data from HPS to the FPGA 

and then do the computation. Therefore, it is necessary to use the on-chip M10K block RAM and we 

need to code it by ourselves. We make data saved in sequence to make life easier so the data from 

Avalon Bus can be stored one by one. However, after doing this we also need to collect the output 

from each layer so we also designed an inner memory in Inference part to store the temporary data 

for next layer. These are very hard and took us a lot of time to finish them.  

I also took care of the debugging and designing the hierarchy of these memories. This is almost the 

hardest part of this project in that we need to ensure that all the signals are in the right timeline.  

The biggest limitation of this project is that this accelerator is way too specific and cannot take care 

of other CNN structures. I think if we have more time we can design a more general one and can 

make the most of the HW/SW interface. 

 

12.4. Haomiao Li 

I was participating in the implementation and testing of memory arrangement. The memory 

management sections connect the software interface and NPU hardware. In this project, we designed 

13 memory modules with various sizes and functionalities. Therefore, it was important to arrange the 

memory execution following our designed sequence in both storing: storing image data, storing bias 

+ parameters and executing: reading image data and corresponding parameters, write-back, reading 

other data and parameters, etc. We developed a unique reading/writing mechanism that fits our 

purpose and current architecture. I helped to debug and write the testbench for this structure. 

 

12.5. Yue Niu 

I am mainly responsible for the software part. I trained a simple convolution neural network on the 

dataset fashion-MNIST. It consists of three convolutional layers and two dense layers. I changed the 

network several times to compromise the memory size and difficulty of the hardware part. I also ran 

the demo in TensorFlow light and quantized it to 8-bit to ensure it still has acceptable accuracy. I also 

exported the model weights and test images and used the same interface in lab 3 to send these data to 

the registers for hardware to use. In future work, it’s important to find a way to store weights in 

hardware to save transmit time. 

 

 

 



18 

13. Complete Listing of Project Files 

Table 4. Complete Listing of Files 

Module Name File Type File Name 

NPU 

FSM Verilog 

FSM.v 

FSM_ACC.v 

FSM_OUT.v 

Top Cell Verilog npu_top.v 

Block Verilog 

auto_comparator.v 

data_converter.v 

input_buffer.v 

MAC.v 

npu_v8.v 

piso_out.v 

ReLU.v 

syn_fifo.v 

MATLAB Golden Block 

Golden model golden_model.m 

Custom layer function 

conv2d.m 

dense.m 

flatten.m 

maxpooling2by2.m 

TensorFlow model Jupyter notebook Fashion MNIST.ipynb 

Top hardware module System Verilog vga_ball.sv 

Memory 
System Verilog 

mem_top.sv 

memory.sv 

memory_read_sim.sv 

memory_write.sv 

SV Testbench memory_test.sv 

Software C files 

hello.c 

read_weights.c 

vga_ball.c 

read.c 

 


