HuarongDao Inspired Block Game

Haobo Liu (h13645), Nina Hsu (hh2961), Rui Chu (rc3414), Jingwei Zhang (jz3555), Jiusheng
Zhang (jz3444)

1 Introduction

In our final project for the Embedded System course, our group created a block-moving
game on a DE1-SoC board using Logitech F310 gamepad as controlling inputs, as well as a
VGA display to show our game graphics and speakers to play a background soundtrack along the
game playing experience. The simple logic of this game is inspired by both HuarongDao and
some other block-moving games. As the player, he/she will be displayed with a 4x4 game space
with 15 numbered (1-15) blocks. And the numbers will have scrambled placements on the space.
The task for the player is, by moving one block at a time, to re-order the blocks into the correct

numerical order.

For displaying the graphic on the VGA screen, we implemented a hardware system
verilog design to register each game block as a hardware component, in which each block will be
displayed on the screen based on the location information stored in memory. Also, the. The
background soundtrack is implemented in System Verilog completely, players will hear the

soundtrack the moment they start the game.

Other than those hardware designs, the rest of the system is handled by software in C.
First, the Logitech F310 gamepad was connected and registered as a USB HID device using the
usblib 1.0 library. After interpreting the packets from Direct-Input mode from the gamepad, we
were able to control the game logic using the gamepad. Additionally, the game logic is fully in C
code. It will accept input from the gamepad and change the hardware components. Lastly, we

also have a C file in charge of any controlling action on the game blocks.

In this report, we will first cover the system Architecture overview to give the whole
system design a review. Then, we will cover the hardware design on both the VGA display and
soundtrack. Next, we will cover the software design in our design, which will be on both the
control drivers and game logic. We will then show a series of screenshots of our project. All the
designs and code will be included in the Code Appendix for viewing. Additionally, you can

download the zip files in (GitHub link) to try to load this design.

2 System Overview

Controller

Logitech F310 Gamepad Libusb 1.0

(User Space
vga_block.c usegamepad.c
gamelogic.c

L gameutils.c

*J Avalon Bus

r |

" VGA Display
Audio Audio Jack 15 game blocks
Soundtrack playing block_ids

block_locations

3 Hardware

Hardware Interface

clock]

!k clk

reset

&ESEt reset

avalon_slave 0
ritedata[31..0]

; writed ata
write .
s write
hIpSE|ECt chipselect
ddress[4..ﬂ] address
vga

GA B[T7..0] b
GA BLANK n blank n
GA CLK clk -
GA G[T7..0] .
GA HS he
GA R[7..0] .
GA SYNC n

syne_n

W5

Writedata:32-bit data received from software

Address:determines the locations the writedata need to be stored to

Signal x, y control the location of corresponding blocks.
Cursor_x, cursor_y control the location of the cursor.
Signal selected indicate whether the block at current cursor is selected.

Signal win decides whether to display the smile face.

Address Writedata (4 bits per cell)

0 x1 yl x2 y2 x3 y3 x4 y4

1 x5 yS x6 y6 x7 y7 x8 y8

2 x9 y9 x10 y10 x11 yll x12 yl2

3 x13 yl3 x14 y14 x15 yl5 cursor_Xx | cursor_y

4 unused selected win

VGA Display

|
e

Press Y to Reset

Digital numbers are simple, so we hard coded the pixel configuration of every number in the
hardware. The black box represents the cursor. Similar to digital numbers, its pixel configuration
was also hard coded in hardware. The smile face is a 240x240 px image, which is loaded into

memory during the initialization process. One pixel is read from memory every cycle.

Soundtrack playing

For the audio part, we used an Audio Controller module, which can accept Clock, left/right
channel input, and allow_input signals. The tune of the sound is controlled by changing the
frequency of input. The frequency number sequences is the data of music which is stored in 2
M10K memory modules as 2 different music selections. When the music is playing, a slower
counter advances the memory address and sends the frequency control data to the audio

controller.

CLOCK_50 AUD_BCLK -
AUD_ADCDAT AUD_ADCLRCK P

reset AUD_DACLRCK |

_’
_>
_’
| clear_audio_out_memory AUD XCK
» _’

= | clear_audio_in_memory

AUD_DACDAT _’
——
——
—_’
_b

left_channel_audio_out[AUDIO_DATA_WIDTH:1]
right_channel_audio_out[AUDIO_DATA_WIDTH:1]
write_audio_out

L left_channel_audio_in[AUDIO_DATA_WIDTH:1] —
read_audio_in
——

right_channel_audio_in[AUDIO_DATA_WIDTH:1]
audio_in_available

—p
audio_out_allowed jr—

[Ports for receiving data I Forts for sending data Il Forts to be connected to the pins I Other ports
-r-
music2:m2
clock
data[7..0] ql7..0]
.4:0 rdaddress[4..0]

1'h0O wren

5 music:m-1

music_mem_pointer[6..0]
address[6..0]

clock
data[7..0]
1'h0O wren

ql7..0]

4 Software

In this section, we will discuss the software design of this project. It will cover the game

logic design, hardware interaction, and gamepad driver.

Gamelogic

In the gamelogic.c file, this is the file containing all of our game logic for this project.
This is our core program that will take in gamepad input and update the VGA display based on

the game states. The main states our program keeps track of are:

e (Game states
e Blocks location (in the 4x4 grid)
e Steps remaining
e Win
e Cursor location
e Cursor x/y (in the 4x4 grid)
e Gamepad inputs

e Actions from player (up/down/left/right, select/un-select)

Game States: For the game state, it will record all the needed information about each block state
in the game, which can be used to communicate with the hardware to determine the location of
each displayed VGA block. When starting the game, it will initialize a 4x4 board with a random
order of 15 blocks and 1 empty block. In the struct for the game state, it will record this

information about each block and its relative location in the 4x4 grid.

Code for customized Struct for our gamelogic

} location t;

type; 0: Empty, 1: Normal Block
location t location;

} block t;

location t cu

location t se

} vga ball arg t;

Code for Gamelogic Array
block t arr[4][4]

{blockl,

Cursor Locations: Additionally, we also record the player’s cursor location in the game, which
reflects which block they are currently on. The cursor will also have a visual effect on the

display, which will use information from this code.

Gamepad Inputs: Based on the intercepted packets from the gamepad driver, the game logic file
will use the input to change game states, which will reflect on the VGA display if the state

changes.

Code for gamepad driver in gamelogic.c file

r libusb interrupt transfer (gamepad, endpoint address,

actual length, 0);

(r 0 actual length (data))

{// code for intercepting gamepad input and conduct game logic}

With the game logic file recording the game states and communicating them with the hardware,

the player can do the following actions in our project game:

1. Connect the gamepad to the FPGA board and start the game

A A o B

Start the game with random order of the blocks

Move the cursor to select the block to interact with

Press A to select the current block

Move blocks (with empty space nearby) with gamepad input
Press A again to deselect from the current block

Repeat steps 3-6 till

Win: blocks are sorted in order

Reset: Press Y to reset the game

Gamepad Driver

The main peripheral of this project is a Logitech F310 Gamepad, which is used to provide

a way for the player to interact with the game through controller pressing. For connecting the

gamepad with our program, we use libusb 1.0 to identify the gamepad as a USB HID device, and

we will use the intercepted packets as user input actions.

While implementing the driver for the gamepad, there were some roadblocks we had to

overcome to make sure the controller was usable:

I.

The controller (Logitech F310) has two different modes when plugging into the board,
X-Input, and Direct-Input. According to the analysis using WireShark, those two modes
can send different styles of packets to the board. After researching what kind of input will
be best suited for FPGA board connection, we found out, by using Direct-Input mode, the
board can identify the gamepad as a USB device, which is less raw to handle.

Although as a USB device, it is not the keyboard type we used to use in our lab
implementation. Therefore, we need to find out the correct way to connect the gamepad
and receive its packets. After looking into the documentation of libusb1.0, we found out
there is a USB_HID GAMEPAD PROTOCOL we can use to do the above works.

After that, the input from the gamepad is in its raw format of data. We need to find useful
data from the raw packets that represent certain actions on the gamepad. Also, we need to
understand how the gamepad sends packets. After connecting the gamepad to a test
driver, we were successfully able to find the correct data to use in the game logic file to

represent the actions on the gamepad.

Code snippet from gamepad.c
num ase
libusb device *dev
(libusb _get device descriptor (dev, &desc) 0) {
fprintf (stderr, "Error: libusb get device descriptor failed\n");

exit (1) ;

(desc.idVendor LOGITECH VENDOR ID
LOGITECH F310 PRODUCT ID) ({
libusb config descriptor *config;
libusb get config descriptor (dev, 0, &config);
config->bNumInterfaces; i++) {
config->interface[i] .num altsetting; k++) {
libusb interface descriptor *inter
config->interface[i].altsetting k;
(inter->bInterfaceC s USB_HID INTERFACE CLASS
inter->bInterfaceProtocol USB _HID GAMEPAD PROTOCOL) {
ry
((r libusb open (dev, gamepad)) 0) {
fprintf (stderr, "Error: libusb open failed:

exit (1) ;

(libusb kernel driver active (gamepad, 1))

libusb detach kernel driver (gamepad, 1i);

libusb set auto detach kernel driver (gamepad, 1);

((r libusb claim interface (gamepad, 1i)) 0) {

fprintf (stderr, "Error: libusb claim interface failed:

exit (1) ;

endpoint address inter->endpoint [0] .bEndpointAddress;

found;

After setup, we only used partial input from the gamepad, which is enough for our game

logic implementation:

e Arrow buttons: Up/Down/Left/Right for moving the cursor/block

e Action buttons: A/Y for different game interaction

Note: in the game logic file, the game loop will ignore any other packet input that is not one of

the above actions.
vga_ball.c

This file helps to aid the interface between hardware components with our software
design. The main purpose of this file gives the necessary communication methods for software in

C to access hardware information on our game blocks.

Code for VLA struct

location t cursor

location t se

block t blocks

} vga ball arg t;

vga ball dev {
resource res;
__liomem *virtbase;

location t locations[16

aevy

writelocation (location t locl, location t loc2,

location t loc3, location t loc4,

iowrite32 (data,

5 Discussion and Learning

In our project design, we implemented a essentially solve-15 game in a FPGA board

situation. The design was simple, but we were able to combine things we learned from classes

and labs into this project.

The roadblock encountered in this project was also able to help us understand the design

in embedded systems further.

First, connecting a USB gamepad requires finding the compatible controller to the FPGA
board, as well as finding the correct lib to use so the board can identify the USB plugin as
a HID device. Also, since most online resources on libusb 1.0 are about how to use it for
keyboard input, we need to deal with the raw packets from the gamepad ourselves. After
using WireShark to analyze the output, we were able to find the data we needed to use for
our gamelogic.

Second, since our project requires the display of pictures and numerical data, we need to
find a way to load our resources into the hardware for compiling. The way we came up
with were two parts: for the block number, we wrote the correct display of each number
(1-15) in our systemverilog file; then, for the picture we need to display, we use tool to
transfer the 240x240 png file into .mif file, which can be latter used to create new
memory black in Quartus.

Third, for the gamelogic implementation, we need to understand how can we interface
with the block components in hardware. The method we came up with was to pass the
gamestate to the block driver file, and in the driver, it will break down the gamestate into
addresses to retrieve/update. Thus, our graphic display was able to show on VGA based
on the current gamestate. By restricting the player actions inside the gamelogic, we were

able to avoid any hardware faults.

There are also many future improvements we can do to make this a better game to play with:

The game interface is still in a rough shape since we did not use Sprite to display layers
of graphics. If time allowed, we could make a more sophisticated game UI so the playing
will be smooth

The soundtrack playing is currently isolated from the game playing, our hardware was
capable to play the sound, all we need to add was another sound driver file. By doing so,
we can add more game sound to the project.

For the block display, we displayed everything on a single layer. Since our gamelogic is
simple enough, there seems to have no bug/lag due to memory accessing issue. However,
for future more complicated UI design, we need to make sure our memory access has no

conflict.

6 Team Contribution

Haobo Liu (h13645): Gamelogic design and implementation, Project documentation
writing (slides, reports)

Nina Hsu (hh2961): GameLogic design and implementation

Jingwei Zhang (jz3555): Soundtrack playing design, graphic display implementation
Jiusheng Zhang (jz3444):Soundtrack playing design, graphic display implementation
Rui Chu (rc3414): Gamelogic design and implementation, graphic display

implementation

7 Code Appendix

megafunction
GENERATION: STANDA
VERSION: WM1.0

MODULE: altsyncram

File Name
Megafunction Name (s) :

altsyncram

Simulation Library Files

altera mf

LR I I b b b b b b b b b b b i b b b I b b b I b b b 2 b b S I b b S 2 b b b 2 b b b 2 b b S 2 b b S 2 b b S 2 b b g 2

THIS IS A WIZARD-GENERATED LE. DO NOT EDIT THIS FILE!

22.1std.1 Build 917 02/14/2023 SC Lite Edition

R R b b b b b b db b b b b 2 b b 2 b b b 2 b b b 2 b b b 2 b b b 2 b b b 2 b b S 2 b b S 2 b b b 2 b b S 2 b b g 2 b

//Copyright (C) 2023 Intel Corporation. All rights re
1

//Your use of Intel Corporation's design tools, logic fun
other software and tools, and any partner logic
//functions, and any output files from any of the foregoing
// (including device programming or simulation files), and any
//associated documentation or information are expressly
conditions of the Intel Program License
Agreement, the Intel Quartu Prime License
Intel FPGA IP License Agreement, or other applicable
//agreement, including, without limitation, that your use
//the sole purpose of programming logic devices manufactured by
//Intel and sold by Intel or i authorized distributors. Please
//refer to the applicable agreement for further details, at

//https://fpgasoftware.intel.com/eula.

translate off
pPs 1 ps
synopsys translate on
music (
address,
clock,
data,
wren,

a);

[6:0] address;
clock;
[7:0] data;
wren;
[7:0] q;
ALTERA RESERVED QIS

ranslate off

clock;
ALTERA RESERVED QIS

// synopsys translate on

sub wireO;

sub wireO[7:0];

.address_a (address),
.clockO (clock),
.data_a (data),

.wren a (wren),

.q_a (sub wireQ),
.aclr0 (1'bO0),

.aclrl (1'b0),
.address b (1'bl),
.addressstall a (1'b0),
.addressstall b (1'b0),
.byteena a (1'bl),
.byteena b (1'bl),
.clockl (1'bl),
.clocken0 (1'bl),
.clockenl (1'bl),

.clocken2 (1'bl),
.clocken3 (1'bl),
.data b (1'bl),
.eccstatus (),
-ab (),

.rden a (1'bl),
.rden b (1'bl),
.wren b (1'b0));

altsyncram component.clock enable input a "BYPASS",

altsyncram component.clock enable output a "BYPASS",

altsyncram component.init file "../music.mif",

altsyncram component.intended device family "Cyclone V",
altsyncram component.lpm hint "ENABLE RUNTIME MOD=NO",
altsyncram component.lpm type "altsyncram",

altsyncram component.numwords a 128,

altsyncram component.operation mode "SINGLE PORT",
altsyncram component.outdata aclr a "NONE",

altsyncram component.outdata reg a "CLOCKO",

altsyncram component.power up uninitialized "FALSE",
altsyncram component.ram block type "M10K",

altsyncram component.read during write mode port a "DONT CARE",
altsyncram component.widthad a 7,

altsyncram component.width a 8,

altsyncram component.width byteena a 1g

retrieval

Retrieval info: PRIVATE:

Retrieval : PRIVATE: A "o"

Retrieval info: PRIVATE: AclrByte NUMERIC "QO"

Retrieval : PRIVATE: AclrData NUMERIC "O"

Retrieval info: PRIVATE: AclrOutput NUMERIC "Q0O"

Retrieval info: PRIVATE: BYTE ENABLE NUMERIC "on"
Retrieval info: PRIVATE: BYTE SIZE NUMERIC "8

Retrieval : PRIVATE: BlankMemory NUMERIC "O"
Retrieval : PRIVATE: CLOCK ENABLE INPUT A NUMERIC "Q"

Retrieval info: PRIVATE: CLOCK ENABLE OUTPUT A NUMERIC "Q"

Retrieval info: PR 5: Clken NUMERIC "O"
Retrieval info: \ : DataBusSeparated NUMERIC "1"
IMPLEMENT IN LES NUMERIC "O"
Retrieval : PRIVATE: INIT FILE LAYOUT STRING "PORT A
Retrieval info: PRIVATE: INIT TO SIM X NUMERIC "OQO"
Retrieval info: PRIVATE: INTENDED DEVICE FAMILY STRING "Cyclone V"
Retrieval info: PRI ;: JTAG ENABLED NUMERIC "QO"
Retrieval : PRIVATE: JTAG ID STRING "NONE"
Retrieval : PRIVATE: MAXIMUM DEPTH NUMERIC "QO"
NG "../music.mif"
PRIVATE: NUMWOR A NUMERIC "128"
PRIVATE: RAM BLOCK TYPE NUMERIC "2"
PRIVATE: READ DURING WRITE MODE PORT A NUMERIC "
Retrieval info: PRIV E: RegAddr NUMERIC "1"
Retrieval : PRIVATE: RegData NUMERIC "1"
Retrieval : PRIVATE: RegOutput NUMERIC "1"
Retrieval info: PRIVATE: SYNTH WRAPPER GEN POS
Retrieval info: VATE: SingleClock NUMERIC "1
Retrieval : /1 : Us "
ACLR A NUMERIC "o"
Retrieval info: PRIVATE: WidthAddr NUMERIC "7"
Retrieval info: PRIVATE: WidthData NUMERIC "8"
etrieval info: PRIVATE: rden NUMERIC "O"
etrieval info: LIBRARY: altera mf altera £.al o> f components.e
Retrieval info: CONSTANT: CLOCK ENABLE INPUT A STRING "BYPASS"
Retrieval info: CONSTANT: CLOCK ENABLE OUTPUT A STRING "BYPASS"
Retrieval info: CONSTANT: INIT FILE STRING "../music.mif"

Retrieval info: CONSTANT: INTENDED DEVICE FAMILY STRING "Cyclone
Retrieval info: CONSTANT: LPM HINT STRING "ENABLE RUNTIME MOD=NO"
Retrieval info: CONSTANT: LPM TYPE STRING "alts

Retrieval i >: CONSTANT: NUMWORDS A NUMERIC "

Retrieval info: CONSTANT: OPERATION MODE STRING "SINGLE PORT"

Retrieval info: CONSTANT: OUTDATA ACLR A STRING "NONE"

Retrieval info: CONSTANT: OUTDATA REG A STRING "CLOCKO"

CONSTANT : POWF%iUPibN]NI‘IA‘ ZED STRING
Retrieval info: CONSTANT: RAM BLOCK TYPE STRING "M10K"
Retrieval info: CONSTANT: READ DURING WRITE MODE PORT A STRING "DONT CARE"
Retrieval info: CONSTANT: WIDTHAD A NUMERIC "7"
Retrieval info: CONSTANT: WIDTH A NUMERIC "8"
Retrieval : CONSTANT: WIDTH BYTEENA A NUMERIC "1"
Retrieval : USED PORT: address 0 0 7 O INPUT NODEFVAL "address[6.

Re ieva info: USED PORT: clock 0 0 0 O INPUT VCC "clock"

Retrieval info: USED PORT: dat: 8 0 INPUT NODEFVAL "data[7..0
Retrieval info: USED PORT: g O O 8 O OUTPUT NODEEFY
info: USED PORT: wren 0 INPUT NODEFVAL "wren"

Retrieval info: CONNECT: @address

Retrieval info: CONNECT: @clockO

Retrieval info: CONNECT: @data a

Retrieval info: CONNECT: @wren a

Retrieval info: CONNECT: g O O 8

Retrieval info: GEN FILE: TYPE NORMAL music.v

info: GEN_FILE: TYPE NORMAL mus

info: GEN FILE: TYPE NORMAL music.

info: GEN FILE: TYPE NORMAL music.bs

info: GEN FILE: TYPE NORMAL music

info: GEN FILE: TYPE NORMAL music bb.v TRUE

info: LIB FILE: altera mf

megafunction wizard: S$ROM: 1-PORTX
GENERATION: STANDARD
VERSION: WMI1.

MODULE: altsync

File Name:
Megafunction Name (s) :

altsyncram

Simulation Library File

altera mf

KKK AR A AR A AR AR AR A A A A AR AR A A A A A A AN A A AR A A AR A A AR A A A A A kA A A A Ak Ak k k%K

THIS IS A WIZARD-GENERATED FILE. DO NOT EDIT THIS FILE!

21.1.0 Build 842 10/21/2021 SJ Lite Edition

hAhkhkhkkhkhkhkhkhhkhhkhhhkkhhkhhhhhkhAhrhkhkhkhhhhkhhkhhkhkhkhkhhhkhhkhrhkhkhkhhrhrhkkhkhkrhrkhkhkxx

//Copyright (C) 2021 Intel Corporation. All rights reserved.
//Your use of Intel Corporation's design tools, logic functio

//and other software and tools, and any partner logic

//functions, and any output files from any of the foregoing
// (including device programming or simulation files), and any
//associated documentation or information are expressly subject

//to the terms and conditions of the Intel Program License
//Subscription Agreement, the Intel Quartus Prime License Agreement,
//the Intel FPGA icense Agreement, or other applicable license
//agreement, including, without limitation, that your use is for
sole purpose of programming logic devices manufactured by
and sold by Intel or its authorized distributors. Please
applicable agreement for further details, at

>ftware.intel.com/eula.

synopsys translate off
1 ps 1 ps
synopsys translate on
face (
address,
clock,

q) ;

[15:0] address;
clock;
[2:0] a7

ALTERA RESERVED QIS

synopsys translate off
clock;

ALTERA RESERVED QIS

translate on

[2:0] sub wireO;

[2:0] g sub wire0[2:0];

.address_a (address),
.clockO (clock),

.q_a (sub wireQ),
.aclr0 (1'bO0),

.aclrl (1'b0),
.address b (1'bl),

.addressstall a (1'b0),

.addressstall b (1'b0),
.byteena a (1'bl),
.byteena b (1'bl),
.clockl (1'bl),
.clockenO0 (1'bl),
.clockenl (1'bl),
.clocken2 (1'bl),
.clocken3 (1'bl),
.data_a ({3{1'bl}}),
(1'bl),

<)l

.data b
.eccstatus

.ab (O,

.rden_a (1'bl),

.rden b (1'bl),

.wren a (1'b0),

.wren b (1'b0));

altsyncram component.address aclr a "NONE",

altsyncram component.clock enable input a "BYPASS",

altsyncram component.clock enable output a "BYPASS",

altsyncram component.init file "face.mif",

altsyncram component.intended device family "Cyclone V",

altsyncram component.lpm hint "ENABLE RUNTIME MOD=NO",

altsyncram component.lpm type "altsyncram",

altsyncram component.numwords a 57600,

altsyncram component.
altsyncram component.
altsyncram component.

altsyncram component.

altsyncram component

operation mode
outdata aclr a
outdata reg a

ram block type

"ROM",

"NONE",

"CLOCKO",

"M10K" ,

.widthad a

16,

altsyncram component.width a Ep

altsyncram component.width byteena a 1;

NUMERIC "O"

Retrieval info: RIVATE: ADDRE ALL A

Retrieval info: AclrAddr NUMERIC "QO"

Retrieval info: PRIVATE: AclrByte NUMERIC "Q0O"
Retrieval info: PRIVATE: AclrOutput NUMERIC "O0O"
Retrieval : PRIVATE: BYTE ENABLE NUMERIC "QO"
Retrieval : PRIVATE: BYTE SIZE NUMERIC "8"

PRIVATE: BlankMemory NUMERIC "QO"

PRIVATE: CLOCK ENABLE INPUT A NUMERIC "o"
Retrieval info: PRIVATE: CLOCK ENABLE OUTPUT A NUMERIC "QO"
Retrieval info: PRIVATE: Clken NUMERIC "O"
Retrieval : PRIVATE: IMPLEMENT IN LES NUMERIC "O"
Retrieval info: PRIVATE: [NIT FILE LAYOUT STRING "PORT A"
Retrieval : PRIVATE: INIT TO SIM X NUMERIC "QO"
Retrieval : PRIVATE: INTENDED DEVICE FAMILY STRING "Cyclone V
Retrieval i o: PRIVATE: JTAG ENABLED NUMERIC "o"
Retrieva : PRIVATE: JTAG ID STRING "NONE"
Retrieva : PRIVATE: MAXIMUM DEPTH NUMERIC "QO"

PRIVATE: MIFfilename STRING
Retrieve info: PRIVATE: NUMWORDS A NUMERIC "57600"
Retrieval >: PRIVATE: RAM BLOCK TYPE NUMERIC
Retrieval : PRIVATE: RegAddr NUMERIC "1"
Retrieval info: PRIVATE: RegOutput NUMERIC "
Retrieval info: PRIVATE: SYNTH WRAPPER GEN POS
Retrieval info: PRIVATE: SingleClock NUMERIC
Retrieval info: PRIVATE: UseDQRAM NUMERIC "QO"
Retrieval info: PRIVATE: WidthAddr NUMERIC "
Retrieval : PRIVATE: WidthData NUMERIC "3
Retrieval info: PRIVATE: rden NUMERIC "O"
Retrieval o: LIBRARY: altera mf altera mf.altera mf components.all
Retrieval : CONSTANT: ADDRESS ACLR A STRING "NONE"
Retrieval info: CONSTANT: CLOCK ENABLE INPUT A STRING "BYPASS"
Retrieval info: CONSTANT: CLOCK ENABLE OUTPUT A STRING "BYPASS"
Retrieval info: CONSTANT: INIT FILE STRING "face.mif"
Retrieval : CONSTANT: INTENDED DEVICE FAMILY STRING
Retrieval info: CONSTANT: LPM HINT STRING "ENABLE RUNTIME MOD=NO"
Retrieval : CONSTANT: LPM TYPE STRING "altsyncram"
Retrieval info: CONSTANT: NUM RDS A NUMERIC "57600"
Retrieval : CONSTANT: OPERATION MODE STRING "ROM"
Retrieval info: CONSTANT: OUTDATA ACLR A STRING "NONE"
Retrieval info: CONSTANT: OUTDATA REG A STRING "CLOCKO"
Retrieval info: CONSTANT: RAM BLOCK TYPE STRING "M10K"
Retrieval : CONSTANT: WIDTHAD A NUMERIC "1l6"

Retrieval : CONSTANT: WIDTH A NUMERIC "3"

Retrieval info: CONSTANT: WIDTH BYTEENA A NUMERIC "1"

Retrieval info: USED PORT: address 0 0 16 0 INPUT NODEFVAL "address
Retrieval info: USED PORT: clock 0 0 0 O INPUT VCC "clock"
Retrieval 5 SED PORT: g 0 0 3 0 OUTPUT NODEFVAL "
Retrieval : CONNECT: (@address a 0 0 16 0 addre
CONNECT: @clockO (0 0 clock 0 0 0O
CONNECT: g 30 @qia 00
Retrieval info: GEN FILE: TYPE NORMAL face.v TRUE
Retrieval info: GEN FILE: TYPE NORMAL inc FALSE
Retrieval : GEN FILE: TYPE NORMAL face.cmp FALSE
Retrieval info: GEN FILE: TYPE NORMAL face.bsf FALSE
Retrieval : GEN FILE: TYPE NORMAL face inst.v FALSE
Retrieval : GEN FILE: TYPE NORMAL face bb.v TRUE

LIB FILE: altera mf

Vga ball.sv
/*
* Avalon memory-mapped peripheral that generates
*
Stephen A. Edwards

Columbia University

vga ball (input

input reset,
input [31:0] writedata,
input write,
input chipselect,

input [4:0] address,

output [7:0]

output 0
VGA_BLANK n,

output VGA SYNC n) ;

hcount;

vcount;

background r, background g, background b;

x1, yl;

B2, WAL
x3, v3;
x4, v4;
x5, y5;
X6, Vy6;
X7, v7;
%8, v8;
=9, v9g
x10, y10;
x11, yl1l1;
x12, yl2;
x13, y13;
x14, yl4;
x15, y15;
Cursor x, Cursor y;
width;
selected x, selected y;
win;
counters (.clk50 (clk), .7*);

[23:0] face out;

£f1 (hcount [10:1] 119 (vcount 119) 240, clk, face out);

(clk)
(reset)
width 10'h5;
background r 8'h0;
background g 8'hO0;
background b 8'hO0;
x1 10'hO;
yl 10'hO;
x2 10'h78;
y2 10'hO;
X3 10"hf0;
v3 10'hO0;
x4 10'ho0;
v4 10'h78;
x5 10'h78;
v5 10'h78;
X6 10'hf0;
y6 10'h78;
x7 10'h168; // 360
y7 10'h78;

x8 10'hO;

v8 10'hfo0;
x9 10'h78;
v9 10"hf0;
x10 10'hfo0;
y10 10'h£o0;
x11 10'h168;
y1ll 10'hf0;
x12 10'h0O0;
yl2 10'h168;
x13 10'h78;
y1l3 10'h168;
x14 10'h£0;
yl4 10'h168;
x15 10'hl68;
yv15 10'h168;

cursor_ x 10'hO;

cursor_y 10'h0;

selected x 10'h4;
selected y 10'h4;
win 1'b0;
(chipselect write)

(address)

1'b0, writedata[31:28] 120
1'b0, writedatal[27:24] 120
1'b0, writedata[23:20] 120
1'b0, writedata[19:16] 120
1'b0, writedata[l1l5:12] 120
1'b0, writedata[l1l:8] 120} ;
1'b0, writedatal[7:4]

1'b0, writedata[3:0]

1'b0, writedata[31
1'b0, writedatal[27
1'b0, writedatal[23

1'b0, writedatal[l9

1'b0, writedatal[l5 120
1'b0, writedata[ll:8] 120} ;

1'b0, writedatal[7:4] 120} ;

1'b0, writedatal3

1'b0, writedatal[31l

1'b0, writedatal27
1'b0, writedatal[23
1'b0, writedatal[l9

x11 1'b0, writedatall5
yll

x12

1'b0,
1'b0, writedata([7:4

yl2 1'b0, writedatal[3:0
h03
x13
y13

x14

1'b0,

writedata[31
27

1'b0, writedatal

1'b0, writedatal[23

yl4 1'b0, writedatal[l9

x15 1'b0, writedatal[l5

y1l5 1'b0, writedatal[ll

cursor_x 1'b0,
cursor_y 1'b0,
h04

selected x 1'b0,
selected y 1'b0,

win writedatal[0];

14 14
(VGA BLANK n)
(hcount[10:1] 0]

(hcount [10 x1 71

vcount vyl width

hcount [10:] X2 47

(vcount
vcount

vcount

hcount [10 71

vcount y2

writedata[7:4]

writedata[3:0]

hcount [10:1]

vcount
vcount

vcount y2 83

12]

writedata[11:8]

]
]

16]

12] 120
8] A
120} ;
120} ;

writedata[15:12]};
writedata[11:8]};

8'h0, 8'h0O, 8'h0};
480)

hcount[10:1] x1 width vcount
// 1

hcount [10:1] x2
y2 35 width
y2 59 width
width)
width

hcount [10:1] X2 vcount

vl

hcount [10
vcount y2
hcount [10
(vcount
vcount
vcount
hcount [10
vcount y3
hcount[10
vcount v4
hcount [10
vcount y4
hcount[10
vcount y4
hcount [10
(vcount
vcount
vcount
hcount [10
vcount v5
hcount [10
vcount v5
hcount [10
(vcount
vcount
vcount
hcount [10
vcount y6
hcount [10
vcount y6
hcount[10
vcount y'7
hcount [10
vcount y7
hcount[10
(vcount
vcount
vcount
hcount [10
vcount y8
hcount [10

vcount y8

hcount [10:1]
// 2
47 hcount[10:1]
vcount y3 35
vcount y3

vcount v3

8
71 hcount [10:1]

hcount[10

47 hcount[10
vcount yv5

vcount \%S)
vcount v5 83
71 hcount [10:1]

hcount[10:1]
// 5

47 hcount [10:1]
vcount y6 35

vcount y6

vcount v6 3

8
71 hcount [10:1]
hcount [10

6

hcount[10

hcount[10

hcount[10
vcount y8
vcount y8
vcount y8

47 hcount [10:1]

hcount [10:1]

vcount

vcount

vcount

vcount

vcount

vcount

vcount

vcount

vcount

Y width vcount

width vcount

y2

v5

v5

y8

y8

hcount [10
(vcount
vcount
vcount
hcount [10
vcount v9
hcount [10
vcount v9
hcount[10:1]
vcount y10

hcount [10:1]

(vcount y10

vcount y10
hcount [10:1]
vcount y10
hcount[10:1]
vcount y10
hcount [10:1]
vcount yll
hcount [10:1]
vcount yll
hcount [10:1]
vcount y1l2
hcount[10
(vcount
vcount
vcount
hcount [10:1]
vcount y12
hcount[10:1]
vcount yl2
hcount [10:1]
vcount y13
hcount[10:1]
(vcount
vcount y13
vcount y13
hcount [10:1]
vcount y13
hcount [10:1]

vcount yl4a

83

x9
width
x10

x1
35

83

x10

477 hcount[10
vcount v9
vcount v9
vcount v9

47 hcount [1

hcount [10:1]
// 9

47 hcount[10:1]

83 width

71 hcount[10:1]
vcount y1l0 35
vcount y1l0 83
71 hcount [10:1]

width

hcount [10

hcount[10

// 11

hcount [10

hcount[10
vcount A
vcount y1l2 59
yl2 83
hcount[10

hcount [10
// 12

hcount [10

hcount[10

vcount y13

vcount y1l3 59
y13 83

hcount [10:1]

hcount [10

vcount

vcount

vcount

vcount

vcount

vcount

vcount

vcount

vcount

vcount

vcount

vcount

v9

v9

hcount [10:1]
vcount yl4a
hcount [10:1]
vcount yl4
hcount [10:1]
vcount yl4a
hcount [10:1]
y15

hcount[10:1]

vcount

(vcount

y15
y15
hcount[10:1]

vcount
vcount
vcount y1l5
hcount [10:1]
vcount

y1l5

4 ’

(hcount [10:1]

4

8'h80,

14
background r, bac
/* cursor */
(hcount[10:1] cursor_ x

cursor_y 5

v ’ 8

vcount curs

(hcount[10:1] cursor_x

vcount cursor_ y 11

’ ’ 8
(hcount [10:1] cursor x

=

cursor y + 5

’ ’ 8

vcount curs

(hcount[10:1]
113

cursor X

cCursor y vcount cu

0 8

(selected x select

hcount [10

hcount[10

hcount [10

// 14

hcount [10
71 hcount[10:1]
vcount y1l5 35

vcount y1l5 59
y15

hcount[10:1]

83

1]

vcount

vcount

vcount

vcount

vcount

background r, background g, background b};

0 vcount 119 0)

8'hbf, 8'h8f, 8'h00};

kground g, background b};

hcount [10:1] cursor_ x

or_ y 7)

'h0, 8'h0, 8'hO0};

5 hcount[10:1] cursor_ x

)

'hO0, 8'h0, 8'hO0};

113 hcount [10:1] cursor x

or y 115)

'h0, 8'h0, 8'hO0};

5 hcount[10:1] cursor_x
rsor_y 115)

'h0, 8'h0, 8'h0};

ed y 4)

115

vcount

vcount

vcount

vcount

cursor_y

(hcount[10:1] cursor x 7 hcount[10:1] cursor_x 113 vcount
cursor_y 7 vcount cursor_y 9)
, 0 8'hff, 8'hff, 8'h00};
(hcount[10:1] cursor x 7 hcount [10:1] cursor_ x C vcount
cursor y 7 vcount cursor y 113)
7 7 8'hff, 8'hff, 8'h00};
(hcount [10:1] cursor x 111 hcount [10:1] cursor x 113 vcount
cursor_y 7 vcount cursor y 113)
5 7 8'hff, 8'hff, 8'h00};

(hcount [10:1] cursor x 7 hcount[10:1] cursor x 113 vcount

cursor_y 111 vcount cursor_y 113)

8'hff, 8'hff, 8'h00};

1)
(hcount[10:1] 1 hcount [10:1] 359

face out;

8'h00;
ce out[l] == 1)
8'hff;

vga_counters (
clk50, reset,
hcount, // hcount[10:1] is pixel column

vcount, // vcount[9:0] is pixel row

, , , VGA BLANK n, VGA SYNC n);

VGA timing for a 0 MHz clock: one pixel every other cycle

HCOUNT 1599 0

| SYNC| BP |< HACTIVE —-->|FP|SY

Parameters or hcount

// Parameters for vcount
10'd
10'd
10'd
10'd

endOfLine;
(clk50
(reset) hcount
(endOfLine) hcount

hcount hcount

endOfLine hcount

endOfField;
(clk50
(reset) vcount
(endOfLine)
(endOfField) vcount

vcount vcount 10'd 1;

endOfField vcount

// Horizontal sync: from 0x520 to 0x5DF

// 101 0010 0000 to 101 1101 1111
((hcount[10:8] 3'b101)

(hcount [7:5] 3'bl111));

(vcount [9:1] 2);

VGA SYNC n 1'b0; // For putting sync on the green signal; unused
Horizontal active: 0 to 1279 Vertical active: 0 to 479

0000 0000 1280

0011 1111 1599

VGA BLANK n (hcount[10] (hcount[9] hcount [8]))

vcount [9] (vcount [8:5] 4'p1111))

C file:
Usegamepad.h

USBGAMEPAD H
USBGAMEPAD H

<stdint.h>
<libusb-1.0/libusb.h>
<stdio.h>

<stdlib.h>

<arpa/inet.h>

USB_HID INTERFACE CLASS 0x03
USB_HID GAMEPAD PROTOCOL 0x00
LOGITECH VENDOR ID 0x046d

LOGITECH F310 PRODUCT ID 0xc216

libusb device handle *open gamepad(uint8 t *endpoint addre
libusb device devs;
libusb device handle *gamepad NULL;
libusb device descriptor desc;
Ssize_t num devs, d;

uint8 t i, k;

(libusb_init (NULL) 0) {
fprintf (stderr, "Error: libusb init failed\n");
exit (1) ;

((num_devs libusb get device list (NULL, &devs)) 0) {
fprintf (stderr, "Error: libusb get device list failed\n");

exit (1) ;

(d 0;
libusb device
(libusb get device descriptor (dev,
fprintf (stderr, "Error: libusb get device descriptor failed\n");

exit (1) ;

.idVendor LOGITECH VENDOR ID desc.idProduct

LOGITECH F310 PRODUCT ID) ({

libusb config descriptor
libusb get config descriptor (dev, 0,

config->bNumInterfac
config->interface[i] .num altsetting; k++) {
libusb interface descriptor *inter

etting k;
(inter->bInterfaceClass USB HID INTERFACE CLASS
inter->bInterfaceProtocol USB_HID_GAMEPAD_PROTOCOL) {

r;

((r libusbiopen(deV, gamepad)) 0) {

fprintf (stderr, "Error: libusb open failed:

exit (1) ;

(libusb_kernel driver active (gamepad, 1))

libusb detach kernel driver (gamepad, 1i);
libusb set auto detach kernel driver (gamepad,

((r libusb claim interface (gamepad, 1i))

fprintf (stderr, "Error: libusb claim interface failed:

exit (1) ;

endpoint address inter->endpoint [0] .bEndpointAddress;

found;

found:

libusb free device list(devs, 1);

USBGAMEPAD H

Vga ball.c

USBGAMEPAD H

USBGAMEPAD H

<stdint.h>
<libusb-1.0/libusb.h>
<stdio.h>

<stdlib.h>

<arpa/inet.h>

USB_HID INTERFACE CLASS 0x03
USB_HID GAMEPAD PROTOCOL 0x00
LOGITECH VENDOR ID 0x046d
LOGITECH F310 PRODUCT ID 0xc216

libusb device handle *open gamepad(uint8 t *endpoint address) {

libusb device

libusb device handle *gamepad NULL;
libusb device descriptor desc;
ssize t num devs, d;

uint8 t i, k;

(libusb_init (NULL) 0) {
fprintf (stderr, "Error: libusb init failed\n");
exit (1) ;

((num devs libusb get device list (NULL,
fprintf (stderr, "Error: libusb get device list failed

exit (1) ;

(d 0, d
libusb device
(libusb get device descriptor (dev,
fprintf (stderr, "Error: libusb get device descriptor failed\n");

exit (1) ;

c.idVendor LOGITECH VENDOR ID de idProduct

LOGITECH F310 PRODUCT ID) ({

libusb config descriptor
libusb get config descriptor (dev,
(i 0, 1i config->bNumInterfa
nfig->interfac
libusb interface descriptor *inter
config->interface[i] .altsettinc k;
inter->bInterfaceClass USB _HID INTERFACE CLASS
inter->bInterfacePro ol USB HID GAMEPAD PROTOCOL) {
r;
((r libusb open (dev, &gamepad)) 0) {
fprintf (stderr, "Error: libusb open failed:
exit (1) ;

(libusb_kernel driver active (gamepad,
libusb detach kernel driver (gam
libusb set auto detach kernel driver (gamepac

((r libusb claim interface (gamepad,

fprintf (stderr, "Error: libusb claim interface failed:

inter->endpoint [0] .bEndpointAddress;

found:

libusb free device list(devs, 1);

// USBGAMEPAD H

Gamelogic.h

_ HUARONGDAO H
_ HUARONGDAO H

<linux/ioctl.h>

} location t;

{
block id;

type; // 0: Empty, 1: Normal Block, 2: Target Block

location t location;

} block t;

{
location t cursor loc;
location t selected;

win;

block t blocks[15];

} vga ball arg t;
VGA BALL MAGIC 'g'
/* ioctls and their arguments */

VGA BALL WRITE BACKGROUND _IOW (VGA BALL MAGIC, 1, vga ball arg t *)
VGA BALL READ BACKGROUND IOR(VGA BALL MAGIC, 2, vga ball arg t *)

Gamelogic.c

<stdio.h>
<stdlib.h>
<string.h>
<arpa/inet.h>
<unistd.h>
"usbgamepad.h"
<stdint.h>
<stdbool.h>
"gamelogic.h"
<sys/ioctl.h>
<sys/types.h>
<sys/stat.h>
<fcntl.h>
<string.h>

<unistd.h>

libusb device handle *gamepad;

uint8 t endpoint address;

block t create block(id)
{

block t b;

b.block id id;

b.type lg

}i
vga ball arg t vla;
vga ball fd;

init;
filename "/dev/vga ball";
vin;
write2hw (vga ball arg t vla)
init)

((vga ball fd open (filename, O RDWR)) 1)

fprintf (stderr, "could not open ", filename);

(ioctl(vga ball fd, VGA BALL WRITE BACKGROUND, &vla))

perror ("ioctl (VGA BALL SET BACKGROUND) failed");

’

cursor moving(block t arr[4][4], location t location, direction) ;

block moving(block t arr([4][4], location t location, direction) ;

block to string(block t arr[4][4], location t cursor location);
write hw(block t arr[4][4],
location t location, location t selected loc);

arrays_are equal (block t arrl[4][4], block t arr2[4][4])

arr2[i] [j].block id)

main ()

err, col;

sockaddr in serv

transferred;

// char keystate[l1l2];
msg[128];

memset (msg, 0, 128);

/* Open the keyboard */

((gamepad open_ gamepad (

fprintf (stderr, "Did not find a keyboard

exit (1) ;

init () the game state

object: move the block to top right corner

level one: 15 blocks,target one block under on the right corner

we will have a blocks.c file to deal with block moving solely

for game logic, please implement in this file!

clare variabl
ed block;

selected block id;

location t cursor location, selected loc;

block t blockO;
block t
block t
block t
block t
block t
block t
block t
block t
block t
block t
block t

block t blockl2;
block t blockl3;
block t blockl4;
block t blockl5;

win 0;

// initialize variables
selected block false;
selected block id 0;

cursor loca

blockO create block(0);

blockl create block(1l);
create block(2);
create block(3);
create block(4);
create block(9);
create block(6);
create block(7);
create block(8);
create block(9);

blockl0 create block(10);

blockll create block(11);

blockl?2 create block(12);

blockl3 create block(13);
blockl4 create block(14);
blockl5 create block(15);
block0.type 0;
blockl. type 28

// initialize block array

// block t init arr[16] = {blockO, blockl, block2, block3, block4, block},
block7, block8, block9, blockl0, blockll, blockl2, blockl3, blockl4, blockl5};

// set winning array
block t arr[4] [4] {

{blockl, block2, block3, block

{block5, block6, block7, bloc

{block9, blockl0, blockll, blockl2},

{blockl3, blockl4, blockO, blockl5}};

(i 0; i 4; 1)

arr[i][j].location.x 38

arr[i] [j].location.y i;

block t winning arr[4] [4] {
{blockl, block2, block3, blockid},
{block5, ock6 lock7 lock8},
{block9, blockl0, blockll, blockl2},
{blockl1l3, blockl4, blockl5, blockO}};

// random shuffle block array

produce a set

DISPLAY THE CURRENT GAMESPACE

write hw(arr, cursor

bool game end 03

/

and handle keypresses */

uint8 t datal[8];
actual length;

r libusb interrupt transfer (gamepad, endpoint

(data), actual length, 0);

actual length

// Get pressed key

uint8 t buttons

to avoid flooding the console

read game states:

logic to handle block interaction based on the gamepad usage

right 2, up 0, down 4

, A 40, B 72, X 24,
game end 0)

// printf ("this is the left arrow button\n");
(selected block false)

>d_loc.y

printf ("move the cursor to the left

")

(cursor moving (arr, location, 1))

cursor

or lo
a.cursor loc.x

write hw(arr, cursor locat

block to string(arr, cursor location);

(selected block

// TODO

// need to verify the blocks movability
write hw(arr, cursor location, cursor location);
// printf ("move the block to the left\n");
(block moving(arr, cursor location, 1))

block t blkl

block t blk2

blkl.loca

arr[cursor location.y] [cursc

_location.x]

arr[cursor location.y] [c tion.x

cursor locatio

write hw(arr, cursor location, cursor

location) ;

block to string(arr, cursor location);

(arrays _are equal (arr, winning arr))

writeihw(arr, cursor loca

// break;

game end 0)

printf ("this is the right arrow button\n");

// cannot move

selected loc.x 4;
A e
4;

printf ("move the cursor to

(cursor moving(arr, cursor location,

cursor location.x 1;
vla.cursor loc.x Ccurso
write hw(arr, cursor location,

block to string(arr,

(selected bl

// TODO
// need to verify the blocks mov:

Cursor

write_hw(aTr, cursor loca

location);

location);

location);

printf ("move the block to the right\n");

(block moving(arr, cursor location,

block t blkl arr[cursor location.y] [c

block t blk2 ar cursor location.y] [cursor

r locatic

arr[cursor location.y] [cursor location.x] blk2;
arr[cursor location. cur ~ location.x 1]

cursor location.x 1;

write hw(arr, cursor location, cur
blockitoistring(;rr, cursor location) ;
(arrays are equal (arr, wirn*ngig“r))
{
game_end =1;
win =1;

write hw(arr, cursor location,

0)

printf ("this is the up arrow button\n");

(selected block false)

cannot move to empty space
// printf ("move the cursor to the up\n");

(cursor moving(arr, cursor location, 2))

cursor loce
vla.cursor loc.y curso
write hw(arr, cursor locati

block to string(arr,

verify the blocks movability

// printf ("move the block to the up\n");

write hw(arr, cursor locatio cursor location);

blkl;

location) ;

(block moving(arr, cursor location, 2))

block t blkl arr[cursor location.y] [cursor location.x];
block t blk2 arr[cursor location.y 1] [cursor location.x];
blkl.loc

arr[cursor_ loc ion.y] [cur ~ location.x]

arr[cursor location.jy 1] [cursor location.x]

cursor location.y 1;

write hw(arr, cursor location

block to string(arr,

(arrays _are equal (arr, winning e

write hw(arr, cursor 1lo

(buttons game end 0)

printf ("this is the down arrow button\n");

ed block false)

// cannot move to empty space
write hw(arr, cursor location,

// printf ("move the cursor to

(cursor moving(arr, cursor location,

cursor location.y
vla.cursor loc.y cursor location.y;
write hw(arr, cursor location,

block to string(arr, cursor Ic

// need to verify the
write hw(arr, cursor location,
// printf ("move the block to the down\n");

(block moving(arr, cursor location, 4))

block t blkl arr[cursor location.y] [c

block t blk2 arr[cursor

blkl.locatior
arr[cursor location.y] [cursor location.x]

5rr[cursor71oca,‘@‘. ~ursor location.x] blkl;

1;

writeihw(arr, cursor location,

block_to_string(att, cursor locati

(arrays are equal (arr, winning

write hw(arr, cursor location,

game end 0)

he A button\n"):;

1 block true;

write hw(arr, cursor location, cursor lc

printf ("select the current block\n");

block_to_string(atr, cursor location);

(selected block true)

false;
writeihw(arr, cursor loca P

printf ("un-select the block\n");

block_to_string(trY, cursor location);

printf ("this is the B button\n");

blockitoistring(arr, cursor_loc

(buttons 136)

printf ("this is the Y button\n");

win 0;

game end 0;

size t i;
srand (time (NULL)) ;
block t init arr([16] {block0O, blockl, block2, block3, block4, block5,
block8, block9, ockl(blockll, blockl2, blockl3, blockl4, blockl5};
(i
{
size t] i rand () (RAND MAX (16 1)

block t t init arr[j];

init arr[j] init arr[i];

init arr[i
.location.x

.location.y

}

selected block false;

write hw(arr, cursor location, selected loc);

block t *blockat (block t blocks[4][4],
{
i, J;

block t *b;

(blocks

printf ("1\n") ;
b blocks[i][J];
b;

write hw(block t arr[4][4], location t location, location t selected loc)

blockat (arr, id);
vla.blocks[id 1] .block id i@lg
ks[id 1].location.: block->1loca

printf ("block [1-x: , Ve ",

vla.blocks[i].block id, vla.blocks[i].loc

vla.blocks[i].location.y);
}

printf ("cursor (", vla.cursor loc.x, vla.

write2hw(vla) ;

bool cursor moving(block t arr[4][4], location t locati

{
(direction 1)
// left

(location.x 0)

false;

false;

(location.y

false;

(arr[location.y 1]l [location.x].

false;

ation

cursor

on,

03

loc.vy);

(direction

{ // right

(location.x

false;

(arr[location.y] [location.x 1].type 0)

false;

false;

(arr[location.y

false;

bool block moving (block t arr([4][4], location t location,
{

(direction 1)
// left

(location.x 0)

false;

false;

(location.y

false;

(arr[location.y 1] [location.x]

false;

false;

(arr[location.y

false;

blockitoistring(blockit arr[4]11[4], locationit cursor loca

printf ("cursor: cursor location.x, cursor location.y

cursor location.y i)

se if (arr([i] [J].type == 1
printf ("$d\t", arr([i][]j].block id);

// printf ("X");

return ne array

shuffle .

> (NULL)) ;

len

init arr[j]

rr[i

arr[i] [J
arr[i][J]

arr[i] [J] .

