CHIR_GAB ELECTRONICS
Spring 2023
Anteater Project

COLUMBIA
UNIVERSITY

Prepared By:
Chirag Chaturvedi (cc4880) & Gabriela Gonzalez (gng2112)

https://qgithub.com/gab-hub/Anteater

Anteater Logo obtained here

https://github.com/gab-hub/Anteater
https://www.arcade-museum.com/game_detail.php?game_id=6891

Table of Contents

Table of CoNteNts...... ... 1
Section 1: INtrodUCHION.........coiiiiiirrr s snn e e mmnn e e s 2
RS T=Tox 1o o B Rt e [= o = 11 SRS 2
Section 1.2: History of Game™.... ... 5
Section 1.3: How to Play Anteater.............ooo s 8
Section 2: System Architecture...........ooo e ————————— 9
ST o7 o] oY Tl o F= 1 o 1T T 4 10
Section 3.1 GraphiC DESIGN.......ccoi i 10
Y=o 1o I Tt I Y = T 1= 10
SeCtion 3.1.2 Other THlES.....uueiiiiii e e e 12
SECHON 3.1.2 SPIIES..uuuiiiiiiiiiiiie et e 12
Section 3.2 Color Pallette...........uuiuiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee et 13
Section 3.2 HaNAIING DEIAYS........ooiiiiiiiiiiie e 14
Section 3.3 Final QSYS CONNECLIONS........ccuuiiiiiiiee et 15
Section 4: SOftWaAre.........cooiiiiii e ————————————————— 16
SeCtion 4.1: JOYSHCK...oooiiiiii 16
SeCHON 4.2: GAME LOGIC. ...ttt 16
SeCtion 4.3: Data flOW.....couuiiiii e 17
Section 4.4: Process Details.o 18
Section 4.5: Object-Oriented Programming............ccccccuuuuruuuiiuiiiiieiiierirrrsrerereeeeeeeeeeeeeeeeeeeeeee 19
Section 5: Process, ProCess, ProCeSS......ciicciiiiiiemeiiiiimssisiissssssissssssssrsssssssrssnssssssensssssssnnses 21
Section 5.1: Partner Programming............coui et 21
Section 5.2: Git BranChiNg.........cooiiiiii e 21
Section 5.3: Simulate a small map in SOftware............ccooiiiiiiiiii 21
Section 5.4: Sprite and Tile DESIGN.........uuuuiiiiiiiiiiiiiiieeieeeeee e 22
Section 5.5: Al 10 SErEeSS TEST.....eiiiii i 22
Section 5.6: SMall VGA SCrEEN......cooi it e e e eeeeeeeees 22
Section 6: Roles & Advice for FUtUre Groups.........ccviiiiiriiiiiiiesisssssssss s sss s s s 23
SECHON B.1: ROIES. ...t ettt e e e e e e e e e e e e e e e e e 23
Section 6.2: Advice for futUre groups.......cooeevviiiiiiiiiiiie e, 23
Section 7: Code files......ciiiiiiiiiiiiiir i 24
SeCON 7.1: File SITUCIUIES......eee e e e e e e e eeees 24
ST=Tox (o] o B2 7T [N Y o] o 7= o o LR 24

Section 1: Introduction

Section 1.1: Inspiration

After realizing that one of our teammates, Chirag, had never played pinball and we
needed to find a game to create for this class, we did some market research and went to
Barcade to knock two birds with one stone.

807EBE + / & NO Fl 168Chys|er Buildi
Empire State Building a

F 3

Google @ 35 lﬁ V)

Barcade

148 W 24th St T
New York, NY 10011

(212) 390-8455 Iﬂl

Website Bar/Arcade

Last updated: May 07,2022 by
pinballrob

Mostly class mes; large beer selection. Uses tokens
instead of quar

The Addams Family (Bally, 1992)
Updated: Apr 23,2022

vell....flip for me thing!" - pi

11:

Avengers: Infinity Quest (Premium)
(Stern, 2020)

Updated: Feb 26,2022

1e Premium table, but | could be mis

Future Spa (Bally, 1979)

Updated: Mar 05, 2022

Figure 1: Initial proposal media for trip

518 3 @ A\ .l 68%m

&

thx for ur patience

11:35 AM - SMS

Broski
It's all good

Dww

I'm so excited we can justify a pinball
trip for school

Yessss

SEING

| was geeking about it to my friends
yesterday

N2

Sunday, . ©1:31PM

@ '.FIQ Text message

Figure 2: Two geeks geeking-out

This is when we saw Anteater, a pacman-like game that really made us feel like horrible
arcade gamers. After seeing that not many people had done this game implementation, we
decided to take-on the challenge and tackle this game.

Section 1.2: History of Game*

*Note: Due to the limited information about this game, all the information acquired for this
section is located on this website

Originally made by Tago Electronics in 1982, Anteater was a part of the only project the
company embarked-on. This game was a part of a three game cabinet including Calipso and
Video Hustler (Tago).

Figure 3: Anteater cabinet with original side art but a converted Stern cabinet

This game, according to the Arcade Museum, is classified as an uncommon game.

https://www.arcade-museum.com/game_detail.php?game_id=6891

Figure 4: Original Tago cabinet flyer

https://flyers.arcade-museum.com/?page=flyer&db=videodb&id=2328&image=1

THEN THERE'S THE OTHER
GAME ... PROFIT!

We've heard the tales of woe..the soft economy, heavy inventories...
declining earnings...etc., etc....

These things may be true in part -- at various times..but, ONE single truth
remains:

HOT GAMES PRODUCE PROFIT!
TAGO Electronics has developed the “TURN-A-PROFIT”" game conversion
system to do one Simple thing: To turn non-profitable games into Money-
Makers! Our research team has accelerated our program of innovative machines
to this degree: We now have three proven winners..three profit makers!
Employing further research, we've discovered that an advertising campaign is
essential...thus, we've employed a major advertising firm to keep our products in
the forefront.Our kits and conversion methods are simple:
Plan-A-Kit includes:
1. Complete conversion instructions
2. Manual with schematics
3. Board for new game (you keep the old one)
4. Harness with connectors compatible for old game or simple butt-splice
with instructions
5. Distributor sends control panel prepaid to TAGO; TAGO modifies panel
with an overplay, How to Play instructions.
6. View plex, header, and side decals
Optional Plan B kit includes:
Same as A except distributor does not send TAGO the control panel. TAGO
will send distributor the parts that are needed to modify the control panel
(Plan B is designed to keep old game in operation without interruption. Fast
turn-around is the idea...3 to 4 days).
The Classic Line” is just that. It assures the operator of turning a profit virtually
every time he converts a game. Each TURN-A-PROFIT" kit provides everything
needed to quickly and easily convert either our game or one of your old onestoa
new, more popular game. And do it for about one-third the cost of a new conven-
tional machine.
All games now available from TAGO™ are licensed from one of several different
American manufacturers. Each is either a new game, or one that has recently
been or currently appears on industry charts. And, many more new and exciting
games are right now under development.
To begin increasing your profits by putting your money into new games instead of
new cabinets, dial 800-527-3639 or214-641-5822 forthe name of the TAGO dis-
tributor nearest you. While you're at it, ask us for our up-to-date list of available
TURN-A-PROFIT™ games.
Distributor inquiries are welcome.
Don't delay - the games will pay!
CALL TAGO...TURN-A-PROFIT TODAY.

e e e
TAGO™ ELECTRONICS
1909 South Great Southwest Parkway - Grand Prairie, Texas 75051 - (214)641-5822 (800) 527-3639

Figure 5: Original Tago Electronics advertisement flyer

https://flyers.arcade-museum.com/?page=flyer&db=videodb&id=2328&image=1

Section 1.3: How to Play Anteater

To see a professional play the game, see this link.

Here is the list of the basic original game-play:
e Capture as many ant larvae with the tip of the anteater tongue, similar to
Pac-Man
e Capturing certain animals add more points to your score
o Ants can be captured from any position in their body, but the tongue trail
cannot hit an ant’s path. Otherwise, it's game over.
Worms can only be captured from behind. Otherwise, it's game over.
Spiders come-out at night and will attempt to traverse the trail of the
tongue. If the spider reaches the tip of the tongue, it's game over.
o Queen ants on the bottom are stagnant and eliminate all the animals on
the screen to allow the user to capture ant larvae.
The level is completed when all the ant larvae are captured.
Players can traditionally utilize a joystick to traverse through the maze.
If players sense danger, they can retract the tongue by pressing a button
traditionally located next to the joystick.

https://www.youtube.com/watch?v=e5PcI2HUi54&embeds_euri=https%3A%2F%2Fwww.arcade-museum.com%2F&feature=emb_logo

Section 2: System Architecture

GA SIGNA
SPRITE SIGNAL
VGA Module :
VGA Monitor
Avalon Bus
Interface

TILE SIGNAL

Joystick USB SIGNA . | GAME SIGNA

Key

Process sSoftware

Process Hardware

Figure 6: System architecture for Anteater Project

The system architecture for the game consists of a Joystick controller that sends control
data from the user to the software. The software controls the game logic and, depending on
game conditions, sends the appropriate signal to the Avalon bus interface. At each cycle, 4-bits
of data are read at a time to display background tiles, sprites, and other game visuals. The
hardware code is stored in a single System Verilog file but can be split into two modules based
on function. The displays the background from the ROM modules and the sprites from the RAM
module utilizing the on-chip RAM and data transmitted from the software. Further details of the
design will be explained in the hardware section.

Section 3: Hardware

Section 3.1 Graphic Design

Modifications were made to the vga_ball.sv file from lab3 in order to implement our
game.

Section 3.1.1 Maze Tiles

Design Decisions

Storage Location ROM module Unchanging data
Memory size 32 x 32 bits Easy storage on FPGA
Quantity 10 Repeated layout because of

limited memory

Total background 128x52 bits Centered on screen to follow
size original game dimensions

Hardware design
implementation

Hardcoded Bitmap

bgndD2_c[0] = 32'b0000_0000_0000_0000_0000_0011_0011_0011;
bgndD2_c[1] = 32'b0000_0000_0000_0000_0011_0100_0100_0011;
bgndD2_c[2] = 32'b0000_0000_0000_0011_0100_0100_0011_0100;
bgndD2_c[3] = 32'b0000_0000_0011_0011_0101

)_ _ 0101_0011_0100;
bgndD2_c[4] = 32'b0000_0011_0101_0011 0101

Implement palette of colors

_0101_0011_0100;
bgndD2_c[5] = 32'b0011_0011_0011_0011_0011_0100_0100_0011;

bgndD2_c[6] 32'b0011_0100_0101_0011_0100_0100_0011_0011;
bgndD2_c[7] 32'b0011_0100_0100_0011_0011_0100_0100_0011;

Table 1: Maze tile information
Background tiles are stored in a ROM module because this is data that is not changing;
it is the underlying layer in which sprites will go on top of. Bits are read 4 bits at a time in order
to assign specific pixels to colors on our palette.
The following flip flop logic assigns them to the positions on the VGA board given the
overall bitmap of the whole game layout. In the bitmap for the whole game, each tile (and sprite)
is referencing the numbers in the flip flop cases.

always_ff@(posedge clk) begin

//if(readreq) //if there is a readrequest output data
case(tile)
4'd0:begin
data <= sky[addrY];
end

4'dl:begin
data <= bgndAl_c[addrY];

end

4'd2:begin
data <= grass[addrY
end

default: data <= 4'b0110
endcase

Figure 7: Tile background logic

bmap1[0] 128'b0000_0000;
bmap1[1] 128'b0000_0000;
bmap1[2] 128'b0000_0000;
bmap1 (3] 128'b0000_0000;
bmap1[4] 128'b0000_0000;
bmap1[5] 128'b0000_0000;
bmap1[6] 128'b0000_0000;
bmap1(7] 128'b0000_0000;
bmap1[8] 128'b0000_0000;
bmap1[9] 128'b0000_0000;
bmap1[10] 128'b0000_0000;
bmap1[11] 128'b0000_0000;
bmap1 [12] 128'b0000_0000;
bmap1[13] 128'b0000_0000;
bmap1 [14] 128'b0000_0000;
bmap1[15] 128'b0010_0010_0010_0010_0010_0010_0010_0010_0010_0010_0010_0010_0010_0010_0010_0000_0010_0010_0010_0010_0010_0010_0010_0010_0010_0010_0010_0010_0010_0010_0010_0010;
bmap1[16] 128'b0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0000_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001;
bmap1[17] 128'b0000_0000;
bmap1[18] 128'b0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0000_0001_0001_0001_0001_0001_0001_0001_0000_0001_0001_0001_0001_0001_0001_0001_0001;
bmap1 [19] 128'b0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0000_0001_0001_0001_0001_0001_0001_0001_0000_0001_0001_0001_0001_0001_0001_0001_0001;
bmap1[20] 128'b0000_0000;
bmap1[21] 128'b0001_0001_0001_0001_0001_0000_0000_0001_0001_0001_0001_0001_0001_0001_0001_0000_0001_0001_0001_0000_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001;
bmap1[22] 128'b0001_0001_0001_0001_0001_0000_0000_0001_0001_0001_0001_0001_0001_0001_0001_0000_0001_0001_0001_0000_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001;
bmap1 [23] 128'b000_0000
bmap1[24] 128'b0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0000_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001;
bmap1 [25] 128'b0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0000_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001;
bmap1[26] 128'b0000_0000;
bmap1 [27] 128'b0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0000_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001;
bmap1[28] 128'b0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0000_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001_0001;

Figure 8: Early iteration of game tile bitmap

10

Section 3.1.2 Other Tiles

Type Size (bits)
Grass 32x32
Sky 32x32

Section 3.1.2 Sprites

Table 2: Other tile information

Design Decisions

Storage Location RAM module Animations, not smooth
movements

Memory size Varies Dependent on size wanted on
screen

Quantity 6 Capture different movements
on sprites

Table 3: General sprites information

Type Size (bits)

Anteater 128x8

Sun 68x17

Ant 32x32

Worm 32x32

Larvae 32x32

Table 4: Specific sprite information

11

Section 3.2 Color Pallette

The 4 bit binary numbers in the sprite and tile locations correspond to the following
colors. By doing the mapping in this way, we can save memory by just having a look-up table of
hex values.

Bit number Color Hex Representation
{VGA_R, VGA_G, VGA_B}
0000 Navy blue (background) {8'h00, 8'h0c, 8'h66}
0001 Orange (anteater) {8'hff, 8'h5e, 8'h0e}
0010 Aquamarine (score/worm) {8'h75, 8'heb, 8'hda}
0011 Tan (maze) {8'hff, 8'h8c, 8'h00}
0100 Magenta (tongue) {8'hff, 8'h00, 8'hff}
0101 Green (grass) {8'h3c, 8'hb0, 8'h43}
0110 Black (details) {8'h00, 8'h00, 8'h00}
0111 White (details) {8'hff, 8'hff, 8'hff}
1000 Electric blue (worm) {8'h00, 8'h33, 8'h99}
1001 Red (sun) {8'hff, 8'h00, 8'h00}

Table 5: Specific sprite information

12

Section 3.2 Handling Delays

Because we are doing a hardware implementation and considering the timing of the
clock cycle, in order for our tiles and sprites to be positioned in the positions we intended, we
need to have variables to load certain information early like xpos. Otherwise, we get tiles that
are not aligned correctly.

always_ff @(posedge clk) begin
{VGA_R, VGA_G, VGA_BY <= {8'he, 8'he, 8'he};
if (VGA_BLANK_n) begin
// starting position ending position
if (hcount[1@8:1] >= 18'h%96 && vcount[9:@] >= 1@'hl && hcount[10:1] <= 10'h220 && vcount[9:0] <= 18'h114) begin

xpos <= (hcount[10:1] - 18'h96) >> 3;

yp <= (vcount[9:8] - 18'hl) >> 3;
addrX@early <= (xpos << 3) + 10'h96;

addrY <= vcount[9:8] - ((yp << 3) + 10'h1);
addrX@ <= (hcount[10:1]-addrX@early - 1);

Figure 9: Flip flop with logic to obtain correct game bitmap position

13

Section 3.3 Final Qsys Connections

Figure 10: Final Qsys connections

Platform Designer - soc_system.qsys (/homes/user/stud/fall22/cc4880/Desktop/project/Anteater/hw/soc_system.gsys; - o X
9! ys gsY: PipProy Y qsy:
File Edit System Generate View Tools Help
? IP Catalog & =] stem Contents % | Address Map £ | Interconnect Requirements & - m
9 P q
‘ 2 x‘ @ l:' l:‘ l:‘ System: soc_system Path: clk_0
Project = E] Use Connections Name Description Export Clock
M New Component... - j‘ B ck_0 Clock Source
. vga.f . =% clk_in Clock Input clk exported
o Other E = clk_in_reset Reset Input reset
o System E‘ clk Clock Output clk_0
Library £ I — clk_reset Reset Output
o= Basic Functions £ B hps_0 Arria V/Cyclone V Hard Proce...
o DSP h2f_userl_clock |Clock Output hps_0_h2...
o= Interface Protocols E‘ <A memory Conduit hps_ddr3
o Low Power < hps_io Conduit hps
o= Memory Interfaces a_nd Cont E‘ hzf:reset Reset Output
¢ Processors and Peripherals h2f_axi_clock Clock Input clk_0
& Qsys Interconnect - h2f_axi_master |AXI Master [h2f_axi_...
¢ Tri-State Components ~| f2h_axi_clock Clock Input clk_0
< Il D f2h_axi_slave AXI Slave [f2h_axi_...
h2f_lw_axi_clock |Clock Input clk_0
| r— ” Edit... ‘ l Add... l —————| h2f_lw_axi_master |AXI Master [h2f _lw_a...
f2h_irqo Interrupt Receiver
f2h_irql Interrupt Receiver
.. Hiel m Device & ‘ - o B vga f 0 vga_f
clock Clock Input clk_0
I soc_system [soc_systen.qsys] i Reset Input [clock]
o m= clk avalon_slave_0 Avalon Memory Mapped Slave [clock] 0;
o m= hps < vga Conduit vga [clock]
o = hps_ddr3
o = reset
o = vga] [»
o Lk clk 0 Current filter:
o I3 hps_0
: E zga_f_ot. ﬁ Messages m - o
onnections
Type Path Message
(X] 2 Info Messages
© |soc_system.hps_0|HPS Main PLL counter settings: n=0m =73
© |soc_system.hps_0|HPS peripherial PLL counter settings: n = 0 m = 39
4] I | [
0 Errors, 0 Warnings Generate HDL... || Finish I

14

Section 4: Software

Section 4.1: Joystick

We implemented our project with the NES USB controllers as depicted below.

SELECT START

Mo

ove tongue right
- o N

R S S M
e A R it W O A AR

gdownwardas

Figure 11: NES USB controller with how they were mapped to be utilized

Section 4.2: Game Logic

Creature Score Addition
Larvae +10

Ant +100

Worms +200

Table 6: Scoring Table

15

Section 4.3: Data flow

Remove all
ants and

worms for 3
seconds

Chcek if the
tip hit a queen Yes +1000
ant
/ ‘ Tongue tip il Go to next
Input from libusb Driver Position Larvaé -0 Y Level
Controller ‘ Calculation .
Check if the
tips hit a larvae o +200
Rest of the
tongue Check if it hits N
position awall ©
Calculation
Check if the tip ag Score
Yes hits an ant Y +100 Calculator
It stops
moving L ——
Check if an
ant hits the
tongue Check if the Check if
tips hit a Worm Ves——| Back or front of Back +10
the worm
No————————»|
L Update
Reduce life Front Position of Video Driver
by 1 r the tip

N

Update rest
of the tongue
position

Check if lives
equal 0

Sound Driver

Processes Condition <W/SW drivers> INPUT SIGNALS R

Legend

Figure 12: Data flow diagram of the Anteater game

16

Section 4.4: Process Details

Input from the controller: Users can control the horizontal and vertical position of the tip of the
tongue with the help of the joystick on the controller. They can also retract the tongue with the
help of a button on the controller. We will be using an Xbox 360 controller which connects to the
PC with a USB connector, this enables us to use the library “libusb” for getting signals from the
controller.

Tongue Tip Position Calculation: After the input has been received, the position of the tip will
be calculated, this is going to be pretty simple as we don’t have to consider how much the
joystick has been pushed and all we have to worry about is the angle as the tongue will only be
moving either vertically or horizontally. During this process, we will be sending the updated
position continuously to the video driver. If the next position is the wall and not a free path, the
tongue will stop moving and it will wait for the next input.

Tongue Position Calculation: The tip of the tongue and the tongue are 2 separate entities in
the game as they interact with other objects in the game very differently from each other, as the
tip moves it leaves a trail of the tongue behind it, and we will have to keep track of all the
positions it is on as collision of the tongue with ants or worms can lead to different outcomes,
the user needs to keep track of the tongue as well. During this process as well we will have to
constantly send position data to the video driver so that it can be reflected on the screen.

Collision of the tip with Ants, Worms, and Larvae: If during movement the tip collides with an
Ant then the Ant disappears and we add 100 points to the score, this data is immediately sent to
the video driver, if it collides with a worm then we check whether if it has collided with the front of
the worm or the back If its the front, then we reduce the lives by 1 and this data is sent to the
video driver to show on the screen, else if the tongue hits the back of the worm then the worm
disappears and we add 200 points to the score, this data is immediately sent to the video driver
and is reflected on the screen. If the tongue hits larvae, the larvae are made to disappear and a
score of +10 is added, if it is the last larvae present in the game, then we progress to the next
level, this data is also sent to the video driver immediately.

Collision of the tongue with Ants and Worms: If during movement an Ant collides with the
tongue, then the number of lives is reduced by 1, if a worm collides with a tongue then it just
passes through, this data is immediately sent to the video driver so that It can be reflected on
the screen, along with that we also check if the no. of lives = 0, because if it does then the game
ends there and this data is also immediately sent to to the video driver.

17

Section 4.5: Object-Oriented Programming

Gamelevel

+ mazeBoundary: BoundaryStruct
+ levelNumber: int

- grassLoc: BoundaryStruct) .)
- SunLoc: BoundaryStruct joystick directed
- AnteaterLoc: BoundaryStruct downwards

- sunRises():None } n
- drawlLevelMaze(int levelNumber) Sprites
- 22:‘;2:2:‘(‘{:2;5&"]0 + scorePoint: CoordinateStruct
joystick directed + Io%aﬁfjp: CoordinateStruct
downwards 1 J [1 *width: int
1 + length: int
{ - id: int
Tongue)) + generate()
- i joystick + disappear()
+ position: Coordinate Struct ovement - move()
detected - checkScorePoint()
+ moveForward() TipTongue
+ moveBackward()
+ moveUp() 1 + position: CoordinateStruct
+ moveDown() 1 touch
- antPresent(): boolean + moveForward()

=

+ moveBackward()

+ moveUp()

+ moveDown()

- spiderPresent(): boolean

Worms

+ score: int
- deathPoint:
+ score: int + score: int + score: int CoordinateStruct

Ants Larvae QueenAnts Spiders

atTip(): boolean - .
checkDeathPoint()]

boolean

Figure 13: UML Diagram of the Anteater game

The Gamelevel class will create the scaffolding for the level, like setting the maze
boundaries, that is contingent on the degree of difficulty for the level. Additionally, grass will be
placed on top of the maze to emulate the original game graphics. For the maze and grass, there
will be a BoundaryStruct created to indicate the exact position of the negative space in the
maze.

Once the maze has been set, the anteater can walk out and place itself at the opening to
prepare for gameplay. In the midst of this, the sun will rise or set depending on the level count.
Depending on the level, the anteater will be standing on its legs or lying down, so we added a
function to take this into account.

When the joystick is moved, the tongue will move and its position will be stored so that
we can display the path the tongue has taken. Additionally, the tongue position will determine
some end-game conditions that will be specified in the Sprites class. The tongue will have
functions that will be triggered by the joystick to move forward, backward, up, and down. The
Tongue class will also have methods such as antPresent(), an endgame condition.

18

Following the tongue will be the TipTongue to denote the attributes for the tip of the
anteater tongue. Only the tip of the tongue can touch the sprites to acquire points. It will have
the same attributes as the tongue class class. Additionally, spiderPresent() method will be
utilized to check if an ant has hit the tongue or if a spider has reached the tip of the tongue, an
endgame condition.

The Sprites parent class will hold information about its location, width, and length, id
(identifier). The attribute scorePoint corresponds to the spot on the sprite that the tip must touch
in order to score a point and cause the sprite to disappear. The functions generate(),
disappear(), move() will change the location of the sprite while the checkScorePoint() will check
if a sprite has been “eaten.”

The Ants, Larvae, and Worms classes will have an attribute score to indicate how much
they are worth. The Spiders class will just check if a spider is at the tip of the tongue.The Worms
class will have a score similar to the other sprites, but it will also have a deathPoint attribute.
Since a worm can only be eaten from behind, deathPoint indicates the point the tip needs to hit
in order to lose. There will be a checkDeathPoint() method to check if the death point has been
touched.

19

Section 5: Process, Process, Process

With only two people in the group, it was vital to have a process to ensure this large
project would get completed. Here are some of the things we did to ensure success.

Section 5.1: Partner Programming

During the labs and during the project, especially when we were getting familiar with
SystemVerilog, it was vital for us to sit together and talk through our thought process and
explain code to each other. This allowed for both of us to learn while fact-checking our logic.

K [| 1K s 115 Ay 1y S N
_ILJ_U_—LJ-‘LJ_LJ_‘U_L S
ot |2 [o 10|t |2 |12 |1]is | te |12]t |9)20 |2y
\/Louy\\’ 32 @2 22 32 22 22 22 22 32 '52 25 |22 =2 22
A4 a / 1 g | =2 z | =212
Dﬁ(;og A { f.(L y al o ulg | &2 |3
X Po - |-
Lile I odc‘oo\l‘m*”'db 20(0 [oold |0l oo | o7 |2
Nlgreel— |- | 2 |3 |e |2 |®|s |3 [&|lb YA IS VA
c|7 |O
 |—|—| = lo|\v|2z|3 |4 >
A;\é;rofo() ol V| 2 = | W |Ss < 7|2
Pusy |— |- | o]0 @@ < o|elolo D
LN TR AN AT AU KRR \l\\\ () frot
DO‘)(“ T T T TS NA Y N e P AN
%

Figure 14: Timing diagram utilized during partner programming

Section 5.2: Git branching

During the implementation of different features, it was vital to have different features on
different branches and only merge to the main branch when code worked.
Section 5.3: Simulate a small map in software

Before the hardware and software integration, we made a smaller map in order to catch
end-cases quicker without dealing with the resource overload of traversing a larger maze. After
all the bugs were smoothed-out of the logic, it was modified for our actual maze.

20

Section 5.4: Sprite and Tile Design

It was really helpful to print on paper pictures of the game and plan out the bit maps on
paper to better visualize the different movements.

Additionally, in order to capture the movements of the animations, it was helpful to watch
YouTube videos of people playing Anteater, especially on 0.25 speed.

Section 5.5: Al to Stress Test

Because of the Al implementation one of our teammates, Chirag was doing for one of his
other classes, we were able to use the model to stress test the model for us. This allowed for
the quicker catching of bugs versus us playing it hundreds of times.

Section 5.6: Small VGA screen

While getting to know the nuances of our SystemVerilog, it was helpful to have a
scaled-down version of our game on the VGA monitor for learning purposes.

21

Section 6: Roles & Advice for Future Groups

Section 6.1: Roles

e Chirag: Hardware design, iterate on software design & stress test, integration
e Gabriela: Initial Software logic, sprite and tile creation, joystick driver adaptation, write
report, create slides, integration

Section 6.2: Advice for future groups

e Start early

e You will be spending a lot of time in the lab, almost the whole semester to be precise.
Therefore, it is important to make it a habit to go to the lab, even if it’s just for a small
sprint. This will allow you to not feel rushed in the assignment and give you room for
curiosity, where the true learning lies.

22

Section 7: Code files

Section 7.1: File structures

e hw
o

O O O O O

o O O O

e other
(@]

ip
m intr_capturer
e intr_capturer_hw.tcl
e intr_capturer.v
Makefile
vga_f.sv
Soc_system_top.sv
soc_system.qsys
soc_system.tcl

anteater_sw.cpp
anteater_sw.h
joystick.c
joystick.h

format.py // for formatting sprites

README.me
Background_tiles // bitmaps for background tiles
Sprites // bitmaps for sprites

Section 7.2: Code Appendix

The most up-to-date versions of all the code can be found here.

23

https://github.com/gab-hub/Anteater

