
CHIR_GAB ELECTRONICS
Spring 2023

Anteater Project

Prepared By:
Chirag Chaturvedi (cc4880) & Gabriela Gonzalez (gng2112)

https://github.com/gab-hub/Anteater

Anteater Logo obtained here

https://github.com/gab-hub/Anteater
https://www.arcade-museum.com/game_detail.php?game_id=6891

Table of Contents

Table of Contents...1
Section 1: Introduction..2

Section 1.1: Inspiration.. 2
Section 1.2: History of Game*... 5
Section 1.3: How to Play Anteater... 8

Section 2: System Architecture..9
Section 3: Hardware.. 10

Section 3.1 Graphic Design... 10
Section 3.1.1 Maze Tiles..10
Section 3.1.2 Other Tiles... 12
Section 3.1.2 Sprites..12
Section 3.2 Color Pallette.. 13

Section 3.2 Handling Delays..14
Section 3.3 Final Qsys Connections..15

Section 4: Software... 16
Section 4.1: Joystick.. 16
Section 4.2: Game Logic... 16
Section 4.3: Data flow..17
Section 4.4: Process Details..18
Section 4.5: Object-Oriented Programming...19

Section 5: Process, Process, Process...21
Section 5.1: Partner Programming.. 21
Section 5.2: Git branching... 21
Section 5.3: Simulate a small map in software.. 21
Section 5.4: Sprite and Tile Design..22
Section 5.5: AI to Stress Test...22
Section 5.6: Small VGA screen... 22

Section 6: Roles & Advice for Future Groups...23
Section 6.1: Roles..23
Section 6.2: Advice for future groups...23

Section 7: Code files... 24
Section 7.1: File structures.. 24
Section 7.2: Code Appendix.. 24

1

Section 1: Introduction

Section 1.1: Inspiration
After realizing that one of our teammates, Chirag, had never played pinball and we

needed to find a game to create for this class, we did some market research and went to
Barcade to knock two birds with one stone.

Figure 1: Initial proposal media for trip

2

Figure 2: Two geeks geeking-out

This is when we saw Anteater, a pacman-like game that really made us feel like horrible
arcade gamers. After seeing that not many people had done this game implementation, we
decided to take-on the challenge and tackle this game.

3

Section 1.2: History of Game*
*Note: Due to the limited information about this game, all the information acquired for this
section is located on this website

Originally made by Tago Electronics in 1982, Anteater was a part of the only project the
company embarked-on. This game was a part of a three game cabinet including Calipso and
Video Hustler (Tago).

Figure 3: Anteater cabinet with original side art but a converted Stern cabinet

This game, according to the Arcade Museum, is classified as an uncommon game.

4

https://www.arcade-museum.com/game_detail.php?game_id=6891

Figure 4: Original Tago cabinet flyer

5

https://flyers.arcade-museum.com/?page=flyer&db=videodb&id=2328&image=1

Figure 5: Original Tago Electronics advertisement flyer

6

https://flyers.arcade-museum.com/?page=flyer&db=videodb&id=2328&image=1

Section 1.3: How to Play Anteater
To see a professional play the game, see this link.

Here is the list of the basic original game-play:
● Capture as many ant larvae with the tip of the anteater tongue, similar to

Pac-Man
● Capturing certain animals add more points to your score

○ Ants can be captured from any position in their body, but the tongue trail
cannot hit an ant’s path. Otherwise, it’s game over.

○ Worms can only be captured from behind. Otherwise, it’s game over.
○ Spiders come-out at night and will attempt to traverse the trail of the

tongue. If the spider reaches the tip of the tongue, it’s game over.
○ Queen ants on the bottom are stagnant and eliminate all the animals on

the screen to allow the user to capture ant larvae.
● The level is completed when all the ant larvae are captured.
● Players can traditionally utilize a joystick to traverse through the maze.
● If players sense danger, they can retract the tongue by pressing a button

traditionally located next to the joystick.

7

https://www.youtube.com/watch?v=e5PcI2HUi54&embeds_euri=https%3A%2F%2Fwww.arcade-museum.com%2F&feature=emb_logo

Section 2: System Architecture

Figure 6: System architecture for Anteater Project

The system architecture for the game consists of a Joystick controller that sends control
data from the user to the software. The software controls the game logic and, depending on
game conditions, sends the appropriate signal to the Avalon bus interface. At each cycle, 4-bits
of data are read at a time to display background tiles, sprites, and other game visuals. The
hardware code is stored in a single System Verilog file but can be split into two modules based
on function. The displays the background from the ROM modules and the sprites from the RAM
module utilizing the on-chip RAM and data transmitted from the software. Further details of the
design will be explained in the hardware section.

8

Section 3: Hardware

Section 3.1 Graphic Design
Modifications were made to the vga_ball.sv file from lab3 in order to implement our

game.

Section 3.1.1 Maze Tiles

Design Decisions

Storage Location ROM module Unchanging data

Memory size 32 x 32 bits Easy storage on FPGA

Quantity 10 Repeated layout because of
limited memory

Total background
size

128x52 bits Centered on screen to follow
original game dimensions

Hardware design
implementation

Hardcoded Bitmap Implement palette of colors

Table 1: Maze tile information
Background tiles are stored in a ROM module because this is data that is not changing;

it is the underlying layer in which sprites will go on top of. Bits are read 4 bits at a time in order
to assign specific pixels to colors on our palette.

The following flip flop logic assigns them to the positions on the VGA board given the
overall bitmap of the whole game layout. In the bitmap for the whole game, each tile (and sprite)
is referencing the numbers in the flip flop cases.

9

Figure 7: Tile background logic

Figure 8: Early iteration of game tile bitmap

10

Section 3.1.2 Other Tiles

Type Size (bits)

Grass 32x32

Sky 32x32

Table 2: Other tile information

Section 3.1.2 Sprites

Design Decisions

Storage Location RAM module Animations, not smooth
movements

Memory size Varies Dependent on size wanted on
screen

Quantity 6 Capture different movements
on sprites

Table 3: General sprites information

Type Size (bits)

Anteater 128x8

Sun 68x17

Ant 32x32

Worm 32x32

Larvae 32x32

Table 4: Specific sprite information

11

Section 3.2 Color Pallette
The 4 bit binary numbers in the sprite and tile locations correspond to the following

colors. By doing the mapping in this way, we can save memory by just having a look-up table of
hex values.

Bit number Color Hex Representation
{VGA_R, VGA_G, VGA_B}

0000 Navy blue (background) {8'h00, 8'h0c, 8'h66}

0001 Orange (anteater) {8'hff, 8'h5e, 8'h0e}

0010 Aquamarine (score/worm) {8'h75, 8'he6, 8'hda}

0011 Tan (maze) {8'hff, 8'h8c, 8'h00}

0100 Magenta (tongue) {8'hff, 8'h00, 8'hff}

0101 Green (grass) {8'h3c, 8'hb0, 8'h43}

0110 Black (details) {8'h00, 8'h00, 8'h00}

0111 White (details) {8'hff, 8'hff, 8'hff}

1000 Electric blue (worm) {8'h00, 8'h33, 8'h99}

1001 Red (sun) {8'hff, 8'h00, 8'h00}

Table 5: Specific sprite information

12

Section 3.2 Handling Delays
Because we are doing a hardware implementation and considering the timing of the

clock cycle, in order for our tiles and sprites to be positioned in the positions we intended, we
need to have variables to load certain information early like xpos. Otherwise, we get tiles that
are not aligned correctly.

Figure 9: Flip flop with logic to obtain correct game bitmap position

13

Section 3.3 Final Qsys Connections

Figure 10: Final Qsys connections

14

Section 4: Software

Section 4.1: Joystick
We implemented our project with the NES USB controllers as depicted below.

Figure 11: NES USB controller with how they were mapped to be utilized

Section 4.2: Game Logic

Creature Score Addition

Larvae +10

Ant +100

Worms +200
Table 6: Scoring Table

15

Section 4.3: Data flow

Figure 12: Data flow diagram of the Anteater game

16

Section 4.4: Process Details

Input from the controller: Users can control the horizontal and vertical position of the tip of the
tongue with the help of the joystick on the controller. They can also retract the tongue with the
help of a button on the controller. We will be using an Xbox 360 controller which connects to the
PC with a USB connector, this enables us to use the library “libusb” for getting signals from the
controller.

Tongue Tip Position Calculation: After the input has been received, the position of the tip will
be calculated, this is going to be pretty simple as we don’t have to consider how much the
joystick has been pushed and all we have to worry about is the angle as the tongue will only be
moving either vertically or horizontally. During this process, we will be sending the updated
position continuously to the video driver. If the next position is the wall and not a free path, the
tongue will stop moving and it will wait for the next input.

Tongue Position Calculation: The tip of the tongue and the tongue are 2 separate entities in
the game as they interact with other objects in the game very differently from each other, as the
tip moves it leaves a trail of the tongue behind it, and we will have to keep track of all the
positions it is on as collision of the tongue with ants or worms can lead to different outcomes,
the user needs to keep track of the tongue as well. During this process as well we will have to
constantly send position data to the video driver so that it can be reflected on the screen.

Collision of the tip with Ants, Worms, and Larvae: If during movement the tip collides with an
Ant then the Ant disappears and we add 100 points to the score, this data is immediately sent to
the video driver, if it collides with a worm then we check whether if it has collided with the front of
the worm or the back If its the front, then we reduce the lives by 1 and this data is sent to the
video driver to show on the screen, else if the tongue hits the back of the worm then the worm
disappears and we add 200 points to the score, this data is immediately sent to the video driver
and is reflected on the screen. If the tongue hits larvae, the larvae are made to disappear and a
score of +10 is added, if it is the last larvae present in the game, then we progress to the next
level, this data is also sent to the video driver immediately.

Collision of the tongue with Ants and Worms: If during movement an Ant collides with the
tongue, then the number of lives is reduced by 1, if a worm collides with a tongue then it just
passes through, this data is immediately sent to the video driver so that It can be reflected on
the screen, along with that we also check if the no. of lives = 0, because if it does then the game
ends there and this data is also immediately sent to to the video driver.

17

Section 4.5: Object-Oriented Programming

Figure 13: UML Diagram of the Anteater game

The GameLevel class will create the scaffolding for the level, like setting the maze
boundaries, that is contingent on the degree of difficulty for the level. Additionally, grass will be
placed on top of the maze to emulate the original game graphics. For the maze and grass, there
will be a BoundaryStruct created to indicate the exact position of the negative space in the
maze.

Once the maze has been set, the anteater can walk out and place itself at the opening to
prepare for gameplay. In the midst of this, the sun will rise or set depending on the level count.
Depending on the level, the anteater will be standing on its legs or lying down, so we added a
function to take this into account.

When the joystick is moved, the tongue will move and its position will be stored so that
we can display the path the tongue has taken. Additionally, the tongue position will determine
some end-game conditions that will be specified in the Sprites class. The tongue will have
functions that will be triggered by the joystick to move forward, backward, up, and down. The
Tongue class will also have methods such as antPresent(), an endgame condition.

18

Following the tongue will be the TipTongue to denote the attributes for the tip of the
anteater tongue. Only the tip of the tongue can touch the sprites to acquire points. It will have
the same attributes as the tongue class class. Additionally, spiderPresent() method will be
utilized to check if an ant has hit the tongue or if a spider has reached the tip of the tongue, an
endgame condition.

The Sprites parent class will hold information about its location, width, and length, id
(identifier). The attribute scorePoint corresponds to the spot on the sprite that the tip must touch
in order to score a point and cause the sprite to disappear. The functions generate(),
disappear(), move() will change the location of the sprite while the checkScorePoint() will check
if a sprite has been “eaten.”

The Ants, Larvae, and Worms classes will have an attribute score to indicate how much
they are worth. The Spiders class will just check if a spider is at the tip of the tongue.The Worms
class will have a score similar to the other sprites, but it will also have a deathPoint attribute.
Since a worm can only be eaten from behind, deathPoint indicates the point the tip needs to hit
in order to lose. There will be a checkDeathPoint() method to check if the death point has been
touched.

19

Section 5: Process, Process, Process
With only two people in the group, it was vital to have a process to ensure this large

project would get completed. Here are some of the things we did to ensure success.

Section 5.1: Partner Programming
During the labs and during the project, especially when we were getting familiar with

SystemVerilog, it was vital for us to sit together and talk through our thought process and
explain code to each other. This allowed for both of us to learn while fact-checking our logic.

Figure 14: Timing diagram utilized during partner programming

Section 5.2: Git branching
During the implementation of different features, it was vital to have different features on

different branches and only merge to the main branch when code worked.

Section 5.3: Simulate a small map in software
Before the hardware and software integration, we made a smaller map in order to catch

end-cases quicker without dealing with the resource overload of traversing a larger maze. After
all the bugs were smoothed-out of the logic, it was modified for our actual maze.

20

Section 5.4: Sprite and Tile Design
It was really helpful to print on paper pictures of the game and plan out the bit maps on

paper to better visualize the different movements.
Additionally, in order to capture the movements of the animations, it was helpful to watch

YouTube videos of people playing Anteater, especially on 0.25 speed.

Section 5.5: AI to Stress Test
Because of the AI implementation one of our teammates, Chirag was doing for one of his

other classes, we were able to use the model to stress test the model for us. This allowed for
the quicker catching of bugs versus us playing it hundreds of times.

Section 5.6: Small VGA screen
While getting to know the nuances of our SystemVerilog, it was helpful to have a

scaled-down version of our game on the VGA monitor for learning purposes.

21

Section 6: Roles & Advice for Future Groups

Section 6.1: Roles
● Chirag: Hardware design, iterate on software design & stress test, integration
● Gabriela: Initial Software logic, sprite and tile creation, joystick driver adaptation, write

report, create slides, integration

Section 6.2: Advice for future groups
● Start early
● You will be spending a lot of time in the lab, almost the whole semester to be precise.

Therefore, it is important to make it a habit to go to the lab, even if it’s just for a small
sprint. This will allow you to not feel rushed in the assignment and give you room for
curiosity, where the true learning lies.

22

Section 7: Code files

Section 7.1: File structures
● hw

○ ip
■ intr_capturer

● intr_capturer_hw.tcl
● intr_capturer.v

○ Makefile
○ vga_f.sv
○ Soc_system_top.sv
○ soc_system.qsys
○ soc_system.tcl

● sw
○ anteater_sw.cpp
○ anteater_sw.h
○ joystick.c
○ joystick.h

● other
○ format.py // for formatting sprites

● README.me
● Background_tiles // bitmaps for background tiles
● Sprites // bitmaps for sprites

Section 7.2: Code Appendix
The most up-to-date versions of all the code can be found here.

23

https://github.com/gab-hub/Anteater

