Top Gun

Team Mavericks: Eashan Sapre [es4069], Kuraloviyan
Senthilnathan [ks4065], Aparna Muraleekrishnan

[amb5964]

1. INTRODUCTION

We attempt to design and develop a game titled Top
Gun. This is a side-scroller game where the player controls
a fighter jet, attempting to avoid mountains and missiles. If
the player’s aircraft touches any of the obstacles on screen,
the game ends. The fighter jet ascends each time the player
presses a key, else it descends. The player earns points based
on the distance covered by the jet. A high score is main-
tained in memory and displayed during all game play.

1.1 GAME RULES

e The game starts when the ”Start” button is pressed,
the game can be paused by another button press.

The player controls the jet via keyboard input, press-
ing the space bar to cause the jet to ascend vertically.
The player has no control over the horizontal coordi-
nates of the aircraft.

e Points can be scored by successfully maneuvering around

obstacles.

e Crashing into obstacles causes the game to end. High
score is updated if the player beats the previous record.

There will be three difficulty levels, with more mis-
siles/mountains appearing on the screen as points in-
crease above set thresholds. The screen scroll speed
also increases with increasing difficulty.

2. GAME CONTROL

2.1 Game Logic

This is the core submodule of the game logic which in-
terfaces with all of the other submodules, instructing them
what to do based on the game rules.The game should con-
stantly update the screen by supplying the graphic generator
with the location of the fighter jet, the number of mountains
and frequency of missiles generated based on the score, as
well as the judgment on whether the game is over. This
module also updates the difficulty level and decides the scroll
speed and obstacle frequency accordingly.

2.2 Tracker

The function keeps track of the movement of the jet by
the previous location, instructions from the keyboard and
also a sub function that controls the automatic descent of
the aircraft. Once the space bar is pressed, the jet should

{ VaAOUTRUT JQ:">[vmm-mEnJ<}:{> AVALON BUS K=
aupo
CONTROLLER
-

I
i

R

Figure 1: Hardware Design Components

ascend with a vertical upward speed. When the space bar
is not pressed, the aircraft descends due to the gravitational
pull. We only care about the vertical location of the aircraft.

2.3 Judge

This function calculates the real-time score. The function
will compare the X/Y coordinates of the fighter jet with that
of all obstacles. The speed of the obstacles remain constant
and we use a counter to calculate the score. As long as the
game is not over, the counter increments at the positive edge
of a clock cycle depending on the distance between adjacent
obstacles, and the speed of screen scroll. The score appears
on the top right of the screen. This function also determines
whether the game is over or not. If the coordinates of the jet
overlaps with any obstacle, the counter stops. If so, the jet
blasts(graphically) and the sub module will send a message
to the graphic controller, to generate the “Game over” screen
with the final score and a “Restart” button.

2.4 Graphics generator

This sub module receives all data required for the genera-
tion of graphics, including the coordinates of the jet and the
mountains and missiles and the signal whether the game is
over or not. These coordinates are stored in memory and up-
dated according to the game logic. The graphic controller
uses addressing to access memory-mapped data and then
displays the necessary graphics components on the screen.

2.5 Audio generator

The audio sounds needed in the game, including the back-
ground music, the Top Gun Anthem music, as well as the



sound when the jet crashes, are encoded inside the audio
generator. This sub module should instruct the audio con-
troller which one to play, based on the game logic.

2.6 Milestones
The following are the milestones for this project:

1. Implement hardware ports, controllers and drivers.
2. Implement graphics display with jet and obstacles and
test game screen with input control.

3. Implement game logic at low speed. Implement start/-
pause/restart buttons.

4. Add difficulty levels and integrate audio output.



