
CSEE 4840 Embedded Systems Design Doc
qSIFT

Name UNI

Madhav Bhat mb4989

Khushi Gupta kg3023

Prathamesh Sahasrabudhe ps3320

Jeffrey Wolberg jnw2138

Daniel Seligson ds3824

Table of Contents
1. Introduction

2. System Overview

2.1 Software

2.2 Hardware

2.3 Hardware Memory Constraints

3. Milestones

4. References

1. Introduction

Scale Invariant Feature Transform (SIFT) is an algorithm that is widely

used in image processing. It detects and describes image features in scale

and rotation invariant encoding, and therefore can be used to register

images taken from different distances and angles. Below is an example of

SIFT features from two images of the same object, taken at different scales

and angles.

This feature allows the SIFT algorithm to perform better than other image

processing techniques since it is less dependent on the orientation and size

of the object in the image.

Broadly, the SIFT algorithm can be divided into the following steps:

1. Scale-space peak selection: Finding the potential location for

features. This is done by

● Converting the image into grayscale.

● Creating multiple scaled down versions of this image, say four

images.

● Applying different sized gaussian blurs to each of the scaled

images, say five images each.

● Obtaining the Difference of Gaussian (DoG) for each set of the

scaled images by subtracting every image from the previous

image in the same scale.

● Extracting these images to further find important keypoints.

2. Keypoint Localization: Accurately locating the feature keypoints.

3. Orientation Assignment: Assigning orientation to keypoints.

4. Keypoint descriptor: Describing the key points as a high dimensional

vector.

The gaussian blur mentioned in step 1 is planned to be accelerated by the

FPGA. The rest of the steps will be implemented in C/C++ and are planned

to be processed in the HPS.

2. System Overview

Software:

Software will be responsible for most of the algorithmic steps in the

SIFT algorithm except for the most computationally expensive step.

Software will resize the image before passing it to hardware in order to

compute the Gaussian blur. After receiving the result from hardware it will

proceed with the remaining steps of the SIFT algorithm and calculate the

final SIFT keypoints.

Hardware:

The hardware will be responsible for doing the Gaussian kernel

convolutions that blur the image and are computationally expensive.

Depending on how blurred the image must be, there will be different

standard deviations used in the equation used to𝐺(𝑥, 𝑦, σ) = 1
2πσ 𝑒

− (𝑥2+𝑦2)

λσ2

create the Gaussian kernels. These kernels are matrices of different sizes,

representing a weighted average of the surrounding pixels for each pixel in

the image. A kernel is convolved with the photo, creating a new blurred

image. Since these kernels will be reused for all images passed through

the algorithm, we will calculate the values for these and hardcode them into

the hardware memory.

A sample code written in python that performs the Gaussian blur over

different kernel sizes is as follows:

Before performing any convolutions, the image data will be passed through

the Avalon bus via the writedata and address fields. Reading the image

data from hardware memory will be done in a similar manner. This

simplifies the passing of image data without having to use more

complicated memory protocols like Direct Memory Access or SDRAM

Controllers. The software will also specify which Gaussian kernel to use for

the convolution, since they will be stored in the hardware memory.

The final image with the overlaid SIFT keypoints will be displayed on the

VGA screen and will be implemented in hardware based on lab-3.

Hardware Memory Constraints: There are only 4,450 Kilobits (~570,000

bytes) of on-chip embedded memory, and we plan to use most of it. We

plan on using

1. Two 600*400 grayscale (8 bpp) images, one for both input and

output. A total of 480,000 bytes

2. Gaussian kernels can be hard coded directly in memory (they are

always the same). This requires 8 * (21*21 + 17*17 + 13*13 + 9*9 +

5*5) bytes, a total of 8,000.

We must test if two images and the Gaussian kernels can all fit in chip

memory without anything running out of memory. We can always lower the

resolution of the input image if this is the case.

3. Milestones
1. Loading image data to and from the board from software

2. Implementing Gaussian convolution in systemVerilog

3. Writing the other steps of the SIFT algorithm in software

4. Constructing the output image overlayed with detected SIFT

keypoints

5. Displaying the image to the VGA board.

4. References
1. https://medium.com/data-breach/introduction-to-sift-scale-invari

ant-feature-transform-65d7f3a72d40
2. https://www.sciencedirect.com/science/article/pii/S01419331150

01921?via%3Dihub
3. https://www.cs.ubc.ca/~lowe/papers/iccv99.pdf
4. FPGA Based Parallel Hardware Architecture for SIFT Algorithm
5. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=778

4039&tag=1

https://medium.com/data-breach/introduction-to-sift-scale-invariant-feature-transform-65d7f3a72d40
https://medium.com/data-breach/introduction-to-sift-scale-invariant-feature-transform-65d7f3a72d40
https://www.sciencedirect.com/science/article/pii/S0141933115001921?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0141933115001921?via%3Dihub
https://www.cs.ubc.ca/~lowe/papers/iccv99.pdf
https://ieeexplore.ieee.org/document/7784039
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7784039&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7784039&tag=1

