
Design Document - Sketch Master

CSEE 4840

Embedded System Design

Ajay Vanamali(va2465), Bhoomi Shah(bbs2144), Manish
Shankar(mr4264), Rahul Shanbhag(rns2166)

Spring 2023

Contents

1. Introduction

2. Block Diagram and System Design

3. Algorithms

4. Resource Budget

5. Hardware/Software Interface

6. Milestones

7. References



1. Introduction

The growth in human-computer interaction has not only been in the quality of interaction, it has
also experienced different implementations. From the basic keyboard and mouse, to camera
controlled gestures, the ways to interact with devices has never been greater. We wish to
showcase this with the use of a drawing tablet.

Our design aims to implement a HID interface between a Wacom Tablet and the FPGA. Using
this device, we plan to implement a drawing system that provides users with an image from a
randomized set of low-resolution images. The user will be tasked with tracing this image on the
surface of the tablet and once completed, the user’s attempt will be graded according to a
grading algorithm.

A Wacom Tablet or any other drawing tablet, is usually registered as a HID device and follows
the similar USB HID packet format and behaves similar to a USB mouse. We plan to leverage
this while designing the drivers.

2. System Design and Block Diagram



A high level overview of our system, includes the kernel module and driver to detect and
process the pen strokes. The Wacom tablet USB packets will determine what pixels are
modified. The modified pixels are stored in the frame buffer and the frame buffer is used
to write into the SDRAM. The FPGA will read from the SDRAM and display on the
monitor using the VGA port.

Figure 1: Block diagram of Sketch Master

3. Algorithms



Check Algorithm - Comparing Reference and Live image

Pseudocode
1. Load reference image with its outline
2. Load student image with its outline
3. Compute the absolute difference between the binary images of the outlines
4. Count the number of pixels that exceed a threshold value in the final image

consisting of superimposed images
5. Initialize a penalty counter to 0
6. For each pixel (x,y) in the reference image:
7. Calculate the Euclidean distance between the corresponding pixel in the student

image and the reference image
a. If the distance is greater than ‘x’ pixels:
b. Increment the penalty counter by the difference between the distance and

pixels
8. Calculate the final score as the percentage of correct pixels minus the penalty
9. Assign a grade based on the final score
10.Print the grade (UI / 7 Segment Display)

4. Resource Budget



Frame Buffer:
To compute the approximate memory requirement for storing a frame of data, we
consider 640 pixels and there are 480 vertical rows. This means the frame size is
640*480 = 307200.
In this case we would need ~ 307k*8 or 307K bytes. Where 8 is the 8 bits of color data
per pixel.
We use the 4:2:2 format for RGB where there are 4 red bits, 2 green bits, and 2 blue bits
summing to a total of 8 bits.

5. Hardware/Software Interface

For this project we plan to use the De1-SoC Evaluation Board from Terasic which holds a
Cyclone V SoC FPGA device. The FPGA and the ARM core are connected through the
Advanced Microcontroller Bus Architecture (AMBA) Advanced eXtensible Interface (AXI) bridges.
Although these two components can function entirely independently, communication between the
ARM core and FPGA fabric can be a bottleneck for the overall system. That is why they are
connected with two high-speed 128bit AMBA AXI bus bridges called HPS to FPGA and FPGA to
HPS. The data path width for both bridges can be configured via QSYS to 32, 64, and 128. By
having this variable data width, the bridge can be tuned for maximum performance when there is
a communication between the FPGA fabric and the HPS.

Figure 2: Block Diagram of De1- SoC

We consider the following peripherals for our design:



● VGA Video Output – Displaying the drawing board
● Tablet USB Interface – To handle pen strokes on the tablet
● SDRAM Controller - Storing the framebuffer for VGA

The DE1-SoC has the following specifications:-

1. Memory: The DE1-SoC Computer has an SDRAM, as well as two memory modules
implemented using the on-chip memory inside the FPGA. These memories are described
below.

a. SDRAM: An SDRAM Controller in the FPGA provides an interface to the 64 MB
synchronous dynamic RAM (SDRAM) on the DE1-SoC board, which is organized
as 32M x 16 bits. It is accessible by the A9 processor using word (32-bit), halfword
(16-bit), or byte operations, and is mapped to the address space 0xC0000000 to
0xC3FFFFFF.

b. BRAM (On-Chip Memory): The DE1-SoC Computer includes a 256 KB memory
that is implemented inside the FPGA. This memory is organized as 64K x 32 bits,
and spans addresses in the range 0xC8000000 to 0xC803FFFF. The memory is
used as a pixel buffer for the video-out and video-in ports.

Figure 3: FPGA and SDRAM Interface



Table 1 : SDRAM Pin interface

2. Avalon bus: Avalon-MM interface that supports read and write transfers with agent-controlled
wait requests. The agent can stall the interconnect for as many cycles as required by asserting
the waitrequest signal. If an agent uses waitrequest for either read or write transfers, the agent
must use waitrequest for both. An agent typically receives address, byteenable, read or write,
and write data after the rising edge of the clock. An agent asserts waitrequest before the rising



clock edge to hold off transfers. When the agent asserts waitrequest, the transfer is delayed.
While waitrequest is asserted, the address and other control signals are held constant.
Transfers complete on the rising edge of the first clk after the agent interface de-asserts the
wait request. There is no limit on how long an agent interface can stall.

Figure 4: Avalon Bus Timing Bus

3. VGA Port: The DE1-SoC board has a 15-pin D-SUB connector populated for VGA output. The
VGA synchronization signals are generated directly from the Cyclone V SoC FPGA, and the
Analog Devices ADV7123 triple 10-bit high-speed video DAC (only the higher 8-bits are used)
transforms signals from digital to analog to represent three fundamental colors (red, green, and
blue). It can support up to SXGA standard (1280*1024) with signals transmitted at 100MHz.

Figure 5: VGA Port Interface



Figure 6: VGA Horizontal Timing Diagram

4. VGA Display : We will be using the Raster Scan Algorithm for the VGA Display. Raster scan
algorithm is a popular method for generating images on a computer screen. The process of
displaying using raster scan algorithm follows these steps :

- Setting up the VGA interface: Configure the FPGA to output the VGA signal, including the
horizontal and vertical synchronization signals and the pixel clock. This involves setting
up the timing parameters for the VGA interface, such as the resolution and refresh rate.

- Initialize the frame buffer: Allocate memory in the FPGA for a frame buffer that will hold
the image data. This buffer should be large enough to store the entire image that you
want to display.

- Begin drawing: Start drawing the image by iterating through each pixel on the screen
using a nested loop. Begin at the top left corner of the screen and move horizontally
across each row, then move down to the next row and repeat until the entire screen is
filled.

- Determine the color of each pixel: To determine the color of each pixel, use a
mathematical formula that maps the pixel's location on the screen to its corresponding
location in the frame buffer. This formula will take into account the resolution and refresh
rate of the VGA interface.

- Write pixel data to the frame buffer: Once the color of each pixel has been determined,
write the pixel data to the frame buffer in the appropriate location. This involves using the
memory address of the frame buffer to store the color data for each pixel.

- Output the frame buffer to the VGA interface: Once the frame buffer has been fully
populated with pixel data, output the frame buffer to the VGA interface. This involves
sending the pixel data to the VGA controller at the appropriate times based on the VGA
timing parameters.

- Repeat: Once the first frame has been output to the VGA interface, repeat the process to
generate subsequent frames for animation or video playback.

6. Milestones



Tentative Date Milestone planned

3/31 Driver Implementation - Interfacing Wacom
Tablet with a Linux System

4/7 Implement VGA Controller and Analyze the
Wacom packets

4/14 Implement SDRAM Controller and interface it
with VGA

4/21 Implement Sketch Check Algorithm

4/28 Create UI for Sketch Board

5/5 Final Testing

5/5 Final Presentation

7. References

● DE-1 SoC Manual and Datasheet:
https://www.intel.com/content/dam/altera-www/global/en_US/portal/dsn/42/doc-us-dsnbk-
42-1004282204-de1-soc-user-manual.pdf

● Altera Memory System Design -
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/nios2/edh
_ed51008.pdf

● FPGA based Virtual Drawing System:
https://apiar.org.au/wp-content/uploads/2017/07/22_APJCECT_v3i2_ICT-259-267.pdf

● VGA and SDRAM Controller: https://hsel.co.uk/2016/05/10/fpga-vga-and-sdram/

https://www.intel.com/content/dam/altera-www/global/en_US/portal/dsn/42/doc-us-dsnbk-42-1004282204-de1-soc-user-manual.pdf
https://www.intel.com/content/dam/altera-www/global/en_US/portal/dsn/42/doc-us-dsnbk-42-1004282204-de1-soc-user-manual.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/nios2/edh_ed51008.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/nios2/edh_ed51008.pdf
https://apiar.org.au/wp-content/uploads/2017/07/22_APJCECT_v3i2_ICT-259-267.pdf
https://hsel.co.uk/2016/05/10/fpga-vga-and-sdram/

