
Columbia University

CSEE 4840 Embedded Systems Design

Spring 2023

The Design Document

Eliot Samuel Flores Portillo (esf2150)

Mir Naveen Alam (ma4310)

Carlos Eduardo Cruz (cec2274)

Noe Silva (ns3567)

Shifeng Zhang(sz3104)

Table of Contents

I. Introduction ……………………………………………………. 1

II. System Block Diagram ……………………………………. 1

III. Algorithms

III. a. SCCB Protocol ...………………………………………. 2

III. b. SPI Protocol …...………………………………………. 3

IV. Resource Budgets …………………………………………. 8

V. Hardware/Software Interfaces

V. a. OV7670 Video Camera …………………………………. 9

V. b. HC-SR501 PIR sensor ………………………………….. 11

V. c. VGA Monitor …………………………………………... 13

V. d. SD Card ………………………………………………… 13

VI. References …………………………………………………14



Introduction

The main goal of this project is to implement a security camera that is capable of

capturing images when motion is detected. To achieve our goal we are using Terasic's built

DE1-SoC board which contains a Cyclone V FPGA system and an Arm Cortex A9 Dual

Processor. We are programming the board with the software Quartus developed by Altera. The

additional peripheral devices are:

- OV7670 Video Camera

- PIR Sensor

- SD Card

- VGA Monitor

System Block Diagram

Figure 1. Shows the top level block diagram of our security camera system. We are using four

peripherals, a video camera for live video, a PIR sensor to detect motion, a SD card to save

images and a VGA Monitor to display the images captured. As shown below, the video camera is

connected to the General Purpose I/O pins of the FPGA, as well as the PIR(Passive Infrared)

Sensor, The VGA monitor will display 640X480 pixel images stored in the SD Card. We will

further explain how each peripheral communicates with the DE1-SoC board.

Figure 1. Block Diagram of the Security Camera System

1



Figure 2. System Block Diagram specifying the signals from each module NOTE: Connection from SD Card Module

to the Camera Module indicates the connection from the asynchronous fifo module inside the FPGA.

Algorithms

SCCB

For the communication to the OV7670 camera module the Serial Camera Control Bus (SCCB)

protocol is used, which is a subset of the I2C protocol. SCCB has two different styles: 3-wire and

2-wire variations. The 3-wire method is used to have multiple slaves controlled by one master

and the 2-wire method is used for only one master and slave. This project will implement the

2-wire approach since there is only 1 camera being used.

Figure 3. 2-Wire SCCB

The 2-wire SCCB protocol contains a clock signal SIO_C (Serial Input Output) and a data

transmission signal SIO_D. Data on the SIO_D signal gets written based on the clock from the

SIO_C signal.

2



Figure 4. Waveforms for SCCB Protocol NOTE: This figure represents the 3-wire method.

Data is sent out in phases of 9 bits each, 8 for data and 1 Don’t-Care bit depending on whether

the transmission is a read or write. The purpose of the Don’t-Care bit is to notify that the

transmission is complete. The maximum number of phases a transmission can have is 3, one for

ID Address, Sub-address, and Write Data.

Figure 5. SCCB Data transmission

The ID Address identifies the slave to write and read data from, the Sub-addresses an address

from the slave that contains the read data from the slave, and the Write Data is the data from the

master to the slave.

SPI

Serial Peripheral Interface (SPI) will be implemented to communicate with the DE1-SOC’s on

board SD card reader. The SD card reader is needed to store the images captured from the

camera module when motion is detected.

SPI comes in two different flavors, 3-wire and 4-wire. The 3-wire SPI has SCLK (Serial Clock),

MISO (Master In Slave Out), and MOSI (Master In Slave Out). 4-wire SPI has CS (Chip Select),

MOSI, MISO, and SCLK. This project will implement the 3-wire SPI since only one slave is

needed. The 3-wire SPI option only uses SCLK, MISO, and MOSI.

Before storing data, initialization is needed. The HPS initiates communication by sending a clock

signal to the slave device through the SCLK. Then, the HPS will send a command to the slave

device though the MISO line. Once the slave receives the entire command, the slave will send a

response through the MOSI line. The HPS and slave will continue doing the mentioned tasks

3



until there is no more data to be written into the SD card. Once the communication between the

master and the slave is done, the SLCK will be deasserted.

The SD card interface consists of commands that write and read data from the SD card. The

command frame consists of 6 bytes, where the first byte is the index command, the following

four bytes are the arguments, and the last byte is the CRC. Once the data packet is sent, the clock

will run for 8 more cycles and the SD card will send a response to the HPS through the MISO

port (See figure [8]). In addition, it is known that there are 58 commands but in this project the

most basic ones will be used.

Figure 6. SPI command frame.

Figure 7. Basic SPI commands.

Breaking each frame into five chunks

In order to fit a frame in our on chip memory, each frame has to be broken down into 5 chunks

(see Resource Budgets below). To implement this in code, a counter is made that counts in all

307200 pixels (640*480) and then divides it by five. Each of the chunks is then saved to the

asynchronous FIFO, which acts as a buffer for the pixel data coming from the camera. The code

for this is shown below:

Figure 8. Frame Splitting

4



This shows the process for 1 of the 2 bytes coming in from the camera.

First-In-First-Out (FIFO)

As stated above, the FIFO algorithm is used to create a buffer for the pixel data coming from the

camera. Asynchronous FIFO will be used to allow for more flexibility as this means that the

receiving end of the data pixels does not need to be at the same clock frequency as the camera

interface.

In FIFO, the first element is processed first and the newest element is processed at the end. For

our project, the elements are the pixel data from the camera. The following diagram shows the

basic principle of FIFO.

Figure 9. FIFO Block

A FIFO implementation in C is shown below where 5 elements are added to a queue and then the

oldest element is removed from the queue, followed by the second oldest and so on in

accordance with FIFO.

5



Figure 10. FIFO Code Using Integer Elements

VGA

A VGA module is implemented to display the image from the DE1-SoC’s on board memory to a

VGA monitor. The VGA module from Lab 3 (vga_counters) can be used as a starting point with

some modifications if necessary.

6



7



Figure 11. Code for the VGA module

This module performs a rastor scanning algorithm that uses hcount and vcount parameters to

display the pixels.

Figure 12. Rastor Scanning Diagram

Resource Budgets

Since the resolution from the camera is going to be 640x480 and each pixel has 16 bits, a single

frame of the image will be:

16✕ 640✕ 480 = 4915200 bits/frame

This means that each frame will be 4915 kb in size. The on chip memory of the FPGA is 256kB,

or 2048kb. This means that the memory isn’t enough to store one full frame.

To get around this, each frame can be split up into 5 horizontal chunks. The first chunk is saved

on the asyn_fifo before being saved to the SD card. After the first chunk has been saved, the

second chunk is then saved and so on. This way, instead of having to save 4915 kb to a 2048 kb

memory, we are saving 983 kb. The code for this is shown in the algorithms section.

8



The Hardware/Software Interface

OV7670 Video Camera

In order to attain a live feed from the camera onto the VGA monitor, the camera is controlled

using the SCCB(Serial Camera Control Bus) protocol which is a variation of the I2C

communication protocol. A I2C driver in HDL is needed to establish communication between

the camera and the FPGA. The advantage of SCCB over I2C in this application is the fact that no

pull up resistors are required as the SCCB can produce all three states (high, low and high

impedance), whereas I2C can only produce either low or high impedance.

In order to initialize the camera module, values have to be assigned to each of the control

registers of the camera. Pins D0-D7 (8 bits) represent the pixel data from the camera in parallel.

The pixel data is synchronized to the falling edge of the PCLK and, since each pixel is 16 bits (

RGB565 -> 5+6+5=16), two cycles of PCLK are needed to get a single pixel. The PCLK needs a

reference clock, which is where the input XCLK comes into play. To maintain the resolution of

640x480, the XCLK has to be 25MHz.

9



Figure 13. Initializing Control Registers for the Camera

Figure 14. Pixel Data Timing Diagram

An asynchronous FIFO module would have to be implemented to act as a buffer for the pixel

data coming from the camera.

10



HC-SR501 PIR sensor

The infrared sensor detects infrared light radiated from objects. It is a passive infrared sensor

(PIR) that detects heat energy from objects. This type of sensor is widely used in alarm systems,

often used as motion detectors. Due to the sensed data being analog, we need to convert it to

digital. Some of the main advantages of this sensor is that it can work with a voltage supply from

5V to 20V and 65 mA according to the data sheet. Another advantage is that it produces a digital

output. High when motion is detected and low when it is idle. Also, the PIR sensor has a built-in

noise immunity that helps to provide a smooth digital output pulse. It has an adjustable

sensitivity where the range can be set from 3 to 7 meters. In fact, not only the Fresnel lenses help

to focus more light into the pyroelectric sensor but also helps to increase the range. So the sensor

detectivity can be more efficient. Similarly, the delay when the output goes high can be

adjustable, which ranges from 1 second to 3 minutes. In addition, the sensor has two trigger

modes where the first one is a single trigger mode and the second one is multiple trigger mode.

In the single trigger mode, when motion is detected the output will go high and remain high

depending on the delay setting. If motion continues within the delay, the sensor will not detect it

(See figure [17]). In the multiple trigger mode, the output will go high when motion is detected

and will remain high depending on the delay setting. If motion is detected during the first or

previous time delay, the output will be high for a new delay period (See figure [18]).

Since this sensor has many settings, it is suitable for our project. The idea is to configure

one of the GPIO pins on the FPGA as an input and connect the output of the sensor. Then, the

power will be supplied through the VCC5 pin onboard.

Figure 15. HC-SR501 PIR sensor

11



Figure 16. Single Trigger Mode Detection.

Figure 17. Multiple Trigger Mode Detection

12



VGAMonitor

As mentioned above, the images captured and stored in the SD Card will be displayed on a

VGA(Video Graphics Array) monitor. The DE1-SoC board has a 15-pin D-SUB connector

populated for VGA output. The VGA synchronization signals are generated directly from the

Cyclone V SoC FPGA, and the Analog Devices ADV7123 triple 10-bit high-speed video DAC

(only the higher 8-bits are used) transforms signals from digital to analog to represent three

fundamental colors (red, green, and blue). The board can support up to 1280X1024 pixels

resolution. For this project our pixel resolution is dictated by the video camera resolution; in this

case 640X480 pixels.

Figure 16. Shows the connections of the FPGA board and the VGA connector. Notice that a

digital to analog converter is placed in between. In total 29 Pins of the FPGA are dedicated to

VGA.

Figure 18. Connections between FPGA and VGA

SD Card

The board supports Micro SD card interface with x4 data lines. It serves not only as an external

storage for the HPS, but also as an alternative boot option for the DE1-SoC board.

Figure 19. Connections between HPS and the Micro SD Card socket.

13



A total of 6 pins of the HPS are dedicated to interfaces the SD card socket, 4 bits for data, 1 bit

for clock and 1 bit for command line.

Figure 20. Pin assignment for SD card socket

References

1. https://lastminuteengineers.com/pir-sensor-arduino-tutorial/

2. https://www.mpja.com/download/31227sc.pdf

3. https://community.element14.com/challenges-projects/design-challenges/summer-of-fpga

/b/blog/posts/security-camera-3-interfacing-with-ov7670-camera

4. https://www.ti.com/lit/ml/slva704/slva704.pdf?ts=1680108161191&ref_url=https%253A

%252F%252Fwww.google.com%252F

5. https://www.waveshare.com/w/upload/1/14/OmniVision_Technologies_Seril_Camera_C

ontrol_Bus%28SCCB%29_Specification.pdf

6. DE1-SoC_User_manual_pdf

14


