CSEE 4840 Embedded Systems
NES Emulator

Spring 2023

Otito Darl-Uzu (00d2103), Jason Lam (jjl2247), Tyler Manrique(tm3147)

Table of Contents

Design Overview
Hardware Interface

Picture Processing Unit
Software Interface

CPU

Milestones and references

Design Overview

The goal of this project is to successfully emulate the NES core functionality to play a
ROM on a 256 x 240 screen.

The scope of our emulation is as follows:

1. CPU (8-bit 6502)

2. Addressable memory space (16-bit)

3. Picture Processing Unit (PPU): Our emulation will render on a 256x240 screen
with support for as pixel-level scrolling

4. Controllers: Keyboard inputs will be primary mode of control with possible
support for NES controllers

5. Cartridge boards: We will limit our emulation to ROMS that dynamically map
ROM/RAM into CPU and PPU memory space. We will not support cartridges that
have their own battery-backed RAM, or audio processing unit.

256 x 240 screen Controller Input

PPU CPU NES

CHR RAM PRG ROM Cartridge

Figure 0: NES Emulator Architecture

Hardware Interface

PPU block diagram

OxFFFF Mirrors [controtier 0x2000 |
0x0000 - Ox3FFF
0x4000 [Mask 0x2001 |
Palettes [status 0x2002 |
0x3F00 AanAA
[oAM Address ox2003]
C I] D
Name Tables G PPU D | OAM Data 00 |
(VRAM) (« u D
q D [scroll 0x2005 |
UuUuuu
0x2000 [Address 0x2008 |
Pattern Tables | Data 0x2007 |
(CHR ROM)
0x0000 [oAM DMA 0x4014|

Figure 1: PPU block diagram from NES Ebook (Bugsmanov).

Like in a real NES, nine registers are used to control the current VGA output. Controller,
mask, and scroll are used for PPU output, determining which bit is being drawn at a
time, and scrolling if necessary. OAM addresses/data/DMA are used to access sprite
memory. Address and data access the PPU memory map, shown on the left. This stores
much of the game itself in memory- namely palettes, names, and patterns.

Scanlines

The PPU renders 262 scanlines per frame. 240 of those are used for the actual screen,
and these are translated into VGA output on the FPGA board. The PPU design is based
on the original NES NTSC PPU, which has 341 clock cycles for each scanline. This is
equivalent to 113 clock cycles (~3 PPU cycles per CPU clock cycle).

e CycleO
o lIdle
e Cycle 1-256
o Fetches data for each tile from memory
o Nametable, attribute table, pattern table low and high
o Fed into shift registers (each 8 pixels has the same color palette as a
result)
o At the beginning of each scanline, the data for the first two tiles is already
loaded into the PPU
e Cycle 257-320
o Fetches tile data for next scanline

o Garbage nametable bytes

o Pattern table high and low

o Loads X positions for each sprite
e Cycles 321-336

o First two tiles for next scanline are fetched and loaded into memory
e Cycles 337-340

o Not needed (legacy from old NTSC implementation)

The PPU then idles when all 240 scanlines are rendered, and the Vblank flag is set to
actually display the contents through VGA output.

NTSC PPU Frame

222222222222222222 22 33 3333333333333333333333
Timing 455555555556666666 78 00 1222222222233333333334
9012345678 012345686 90 45 901234567890123456783010
Visible frame =
(Post-render ling)
(Pre-render line)
Unused tile fetch First two tiles on next scanline Unused NT
fetches
(Visible frame) 0-239 [] Sacondary OAM clear || Serie svalustion o net scarine 3 W:H =
(Pre-render tine) 261 [T [TTTTTT I == 11 [=] & H
Legend
Notes:
[Fag operaionimise. [T R fetn ~The [seiick iz implemented by jumz: from (328, 281) 1o (0.0}, mesning
the last tick of the last NT fetch tkes ,0) en 0dd frames, replacing the idie
| EEC | REES

tick,

Figure 2: Frame timing diagram for a single scanline, courtesy of nesdev.com

Communication between PPU and CPU

NMI Interrupt

Controller 0x2000
Mask 0x2001
C aTaialal b Status 0x2002
PPU RAM ‘alalalal
OAM Address 0x2003
—q o] pe— d-B
OAM Data 0x2004 | +— D
— C |) b— g, B
C ») Scroll 0x2005| —p a |) o
UuUuuu Address 0x2006 UuUuUU
CHR ROM Data 0x2007
OAM DMA 0x4014

Figure 3: Communication between PPU and CPU from NES Ebook (Bugsmanov).

The CPU sends information through IO registers (the nine registers seen above), which
communicates with the PPU. The PPU pulls from the RAM and ROM respectively,
updating the registers which is then sent back to the CPU for another cycle.

Software Interface

INES File Format

The .nes file format is the standard format for nes binary files. It is used in several
emulators including official Nintendo ones. Of note to this implementation, it contains a
16 byte header containing the string “NES” in ASCI|, the size of the PRG ROM (in 16K
units), the size of the CHR ROM (in 8K units), and the specific mapper used. Our
emulator will parse this file format and be able emulate the rom present in it.

CPU

The 6502 is a 8-bit little endian processor. It has three 8-bit registers - Accumulator
used in heavily by the ALU and X,Y for data processing. It has a 16-bit program counter
(PC) register which refers to the current instruction. There is a 8-bit stack pointer which
can reference memory addresses $0100-$01FF. There is a 8-bit status register which
contains bit flags set by ALU operations such as overflow, negative, zero, carry, and
interrupt disable (which disables interrupts).

The NES has all of its components mapped to the same address space which can be
divided into three parts: ROM inside the cartridges, the CPU’s RAM and the 1/O
registers. The data bus is used to read or write the byte to the selected address. The I/O
registers are used to communicate with the other components of the system, the PPU
and the control devices.

e The NES CPU has 2K of ram which is mirrored every 2K on the address space
$0000-$07FF.

$2000-$2007 maps to eight 8-bit registers exposed by the PPU to the CPU
$2008-$3FFF are mirrors of PPU registers every 8 bytes

$4000-$4017 map to APU and 1/O registers

$4018-$401F is typically disabled on NES CPUs

$4020-$FFFF is mapped to the cartidage.

The CPU also expects vectors for interrupts and resets at the end of the
cartridge.

On system start, we start program execution (program counter register) to the value
stored in the reset vector (addresses $FFFC—$FFFD), initialize the stack pointer to $100
and start reading instructions. We will use a reference to convert opcodes into
equivalent operations (using basically a large case statement) on allocated memory and
registers represented as uint8_t variables in C code. Instructions take varying number of

6

cycles to complete but in this implementation we do not care about cycle accuracy. Our
solution is to complete all operations in one cycle and tick the PPU clock to catch up
with the CPU. This is accurate enough for most games and the timing errors will
(hopefully) not be too bad.

$10000 $10000

PRG-ROM
Upper Bank
B-bit data bus PRGROM | 00 be—mmmmm e SC000
) ’ PRG-ROM
Lower Bank
$8000 $B000
SRAM SRAM
ROM $6000 $6000
Central Expansion ROM Expansion ROM
Processing FAM Tia] $4020 : $4020
) IO Registers
Unit e || L T $4000
) 1O Registers szomugfg;m?
———————————— 52008
i 1/ Registers
£-bit control bus $2000 $2000
| Mirrors
16-bit address bus SU000SOTRE
____________ S0800
RAM RAM
------------ $0200
Stack
------------ $0100
Zero Page
$0000 ‘o 50000
Figure 4: CPU Memory map
Mappers

Most NES cartridges use various internal components to bypass the NES’s limitations.
These mappers can map memory visible to the CPU and PPU to different parts of the
ROM. Historically this was commonly used to save games (through the use of
EEPROM) or expand memory. Some of the first cartridges with 16K or 32K of ROM
used mapper NROM which mapped its first 16K of ROM to addresses $8000-$BFFF.
The next 16K of addresses ($C000-$FFFF) were mapped to the remaining 16K of data.
However, if the cart only had 16K of ROM, it mirrored the first 16K to the next 16K. More
complicated mappers used registers and more sophisticated memory mapping to get
around the NES’s memory constraints. We will not be implementing all 256 mappers but
will start with NROM and implement a small selection of other mappers to get a wide
range of playable games.

Milestones and References

Milestones
3 easy steps
1. Successfully load ROM into memory space using INES format
Functional Memory space
Successful CPU Emulation - test CPU using nestest (don’t care about cycle
accuracy)
2. Implement PPU in C
Ability to render pixels to 256x240 screen
PPU doesn’t melt CPU
Render ROM on to 256x240 screen
3. Implement PPU in Systemverilog
Input handling
Test and Demo

References

The NES emulation project has been replicated several times, we will leverage the
learnings of other attempts to guide or build: https://yizhang82.dev/nes-emu-overview

NES Dev Wiki: https://www.nesdev.org/wiki/Nesdev

NES emulator tests: https://www.nesdev.org/wiki/Emulator_tests
NES opcodes: http://www.emulator101.com/reference/6502-reference.html

System Documentation: Nintendo Entertainment System Documentation

https://yizhang82.dev/nes-emu-overview
https://www.nesdev.org/wiki/Nesdev
https://www.nesdev.org/wiki/Emulator_tests
http://www.emulator101.com/reference/6502-reference.html
https://www.nesdev.org/NESDoc.pdf

CPUZIREIEAE

Mg BRI) BHEORMEAX © o | KEEWTINRERIAT 2 - THOUETT.
. Hal)
w7 g e
oo o a3 S Tt g o]
P s 0., 152t0m o o p1
. s | ~
T = Mg s F\T
» . w[e —
o [l e Ad
988 — |t) i o ——
LT - L i
% . x R —— Srn
2 06 pan[il] -
: X I g & o 2 2000
- ol K o < o S
30___ o < o Ui, =l)
L,fﬂ, s [z &l o S-RAM J
1 x g L R o o
N U6 L[]
Lol s _
| s Pyt —— a1 =
wesaen 22 [T o P
us '° |87 8 H
— ons s os
SEoun e o1
A o
’ e L2 o5 vee
5 0 e [
P1 RM1 o I ; rme we (5T
e i . e [
us
P o] w0
ey [T
483 3
] P LT o vee
Ls 313
F
&
Q1 f
e

Figure 5: Original NES Block Diagram

