
The Design Document for CSEE 4840
Embedded

System Design
Haichun Zhao (hz2833)
Haomiao Li (hl3619)
Qixiao Zhang (qz2487)
Tianchen Yu (ty2485)
Yue Niu (yn2433)

Contents:
1. Introduction
2. Overall Block Diagram
3. Neural Network Structure
4. Memory Estimation
5. Architecture Specification of Accelerator
6. Hardware and Software Interface
7. Milestone

1. Introduction
Considering the feasibility and workload of this project, we decided to alter our project to a simpler
CNN inference accelerator. We are going to use the Fashion MNIST to train the model and then use
FPGA to implement the inference. We will use the Linux system built in SD card to store the test
data and then use ioctl to transfer data into the board.

Thanks to the hardware design from Tianchen that he finished in course EE6350, we can move
forward our project to the FPGA part. Besides, we have confirmed that the non-parallel version
algorithm in the hardware only costs less than 1% resource utilization on the board. Therefore, we
can move on to make our algorithm parallel so that the CNN can truly be accelerated. The
communication system and other details will be described as follows.

2. Overall Block Diagram

Figure 1. Overall block diagram of the system

The overall system block diagram of our project is shown in Figure 1. Generally our project focuses
on constructing a CNN/MLP hardware accelerator to accelerate a certain neural network algorithm.
The input to the accelerator will be pre-stored image pixel value, network weight, network bias or
the computation results from last layer. The hardware will take the control signals (instructions)
from software (HPS) and fetch the input values from corresponding memory addresses until the all
the computation is completed. The output results of the neural network (results of an image
recognition task) will be displayed directly by the hardware (VGA driver) on the VGA display in
text format.

3. Neural Network Structure

1

Figure 2. CNN architecture of our algorithm

Figure 3. Network specification in TensorFlow

A typical CNN architecture is chosen for our project as shown in Figure 2. Totally there are four
possible operations in the algorithm, 2D convolution, maxpooling, image flatten, fully connected
layer. All of them are standard CNN operations. MNIST or fashion MNIST dataset will be used to
benchmark the performance of our system, thus the input matrix size is (28,28,1). Both MNIST and
fashion MNIST has 10 output possibilities thus the final output layer has 10 neurons. The network
structure in the middle should be clear as shown in Figure 2 and 3. This architecture achieves ~89%
of accuracy when tested in TensorFlow for the fashion MNIST dataset, which is high enough to be
implemented as a course project.

(*Note: originally we are trying to accelerate an architecture called MobileNet, but we simplified
our network structure to this typical CNN architecture for the feasibility concern of the project.)

4. Memory Estimation
The memory usage of our CNN architecture could be calculated as follows:

𝐶𝑁𝑁 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 = 3×3 + 32 + 3×3×32 + 64 + 3×3×64 + 64()×8 𝑏𝑖𝑡 = 1033 𝐵

𝐹𝐶 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 = 576×64 + 64 + 64×10 + 10()×8 𝑏𝑖𝑡 = 37578 𝐵

𝑀𝑎𝑥 𝑑𝑎𝑡𝑎 𝑚𝑒𝑚𝑜𝑟𝑦 𝑜𝑓 𝑡𝑤𝑜 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑙𝑎𝑦𝑒𝑟𝑠 = 26×26×32 + 13×13×32()×8 𝑏𝑖𝑡 = 27040 𝐵

𝐼𝑛𝑝𝑢𝑡 𝑝𝑖𝑐𝑡𝑢𝑟𝑒 = 28×28×8 𝑏𝑖𝑡 = 784 𝐵

Which means the memory requirement for our project is:

𝑇𝑜𝑡𝑎𝑙 𝑚𝑒𝑚𝑜𝑟𝑦 = 1033 𝐵 + 37578 𝐵 + 27040 𝐵 + 784 𝐵 = 66435 𝐵≈67 𝑘𝐵
This value is much smaller than the total amount of block memory (BRAM) in the FPGA (500 kB),
indicating that no external SDRAM is needed.

5. Architecture specification of accelerator (Hardware)
The top-level architecture is consisting of three blocks, a computing core, a FSM and a SSFR as
shown in Figure 4. The computing core is responsible for taking inputs from memory blocks and
generate MAC results to the output. Relevant control signals for driving the computing core will be
generated automatically from FSM. The SSFR stores some configuration options of the core and is
specified in Table 1. The detailed implementation of computing core (NPU core) is shown in Figure
5. The architecture and state transition table of FSM are shown in Figure 6 and Table 2 and 3. The
operation timing diagram is shown in Figure 7.

2

Figure 4. Top level architecture of accelerator

Table 1. Specification of each bit of SSFR
Stationary Special Function Registers (SSFR[15:0])

SSFR[15] SSFR[14] SSFR[13] SSFR[12] SSFR[11] SSFR[10] SSFR[9] SSFR[8]

SEL_OUT[2] SEL_OUT[1] SEL_OUT[0] BYPASS_ReLU1 BYPASS_ReLU2 EN_COMP RST_COMP EN_FIFO

SSFR[7] SSFR[6] SSFR[5] SSFR[4] SSFR[3] SSFR[2] SSFR[1] SSFR[0]

RST_FIFO Unused

Default Values (if reset)

SSFR[15:8] SSFR[7:0]

00100010 10000000

3

Figure 5. Detailed block diagram of the NPU core

4

Figure 6. FSM architecture

5

Table 2. FSM_ACC Transition Table
FSM_ACC State Transition Table (Architecture V7)

Current
State

Next State Output

EN_FSM=0
CTR_OUT=0

EN_FSM=0
CTR_OUT=1

EN_FSM=1
CTR_OUT=0

EN_FSM=1
CTR_OUT=1 EN_BUF_IN CLR_BUF_IN EN_MAC RST_MAC CLR_PISO_OUT

EN_ReLU
ACC_FLAGACC_FLAG

=0
ACC_FLAG

=1

IDLE IDLE IDLE BIAS BIAS 0 1 0 0 1 0 0 0

BIAS ACC ACC ACC ACC 0 1 1 1 0 0 1 No change

ACC ACC LAST ACC BIAS 1 0 1 0 0 0 0 1

LAST WAIT WAIT WAIT WAIT 0 0 1 0 0 1 1 No change

OUT_DONE=0 OUT_DONE=1

WAIT WAIT IDLE 0 0 0 0 0 0 0 No change

Table 3. FSM_OUT Transition Table
FSM_OUT State Transition Table (Architecture V7)

Current
State

Next State Output

EN_ReLU=0 EN_ReLU=1 Shift/~LD_OUT EN_PISO_OUT OUT_DONE WR_EN

OUT_IDLE OUT_IDLE OUT_S1 1 0 0 0

OUT_S1 OUT_S2 OUT_S2 0 1 0 0

OUT_S2 OUT_S3 OUT_S3 1 1 0 1

OUT_S3 OUT_S4 OUT_S4 1 1 0 1

OUT_S4 OUT_S4 OUT_S4 1 1 0 1

OUT_S3 OUT_IDLE OUT_IDLE 1 0 1 1

6

Figure 7. Computing core operation timing diagram
7

6. Hardware and Software Interface
The software and hardware interface via Avalon bus is not fully decided yet. A total of 32 bits
transaction between HPS and FPGA is allowed. Generally ~10 bits will be used for controlling
signals and the rest ~20 bits will be used as instruction code. An instruction set will be developed to
tell the computing core about the memory address for the current computation.

The accelerator will be registered as a Linux device in the device tree. It will communicate with the
FPGA portion through a device driver written in C code. Systemverilog file will specify incoming
and outgoing signals which will eventually be passed to the userspace C program.

For embedded memories, we will be using 10 Kb M10k blocks to hold calculation results from each
layer using dual-port RAM. The total size of M10k blocks in Cyclone V SE A4 is 3970 Kb, which
is sufficient according to calculations in the previous section.

M10k can be invoked in a style like this:

Source: DE1-SoC FPGA memory examples ECE 5760 Cornell University
https://people.ece.cornell.edu/land/courses/ece5760/DE1_SOC/Memory/index.html

7. Milestones
1. CNN architecture prototype in C and implementation research

2. FPGA hardware upgrade to include memory blocks and optimized interface

3. Software controller development and overall system integration with benchmarking

9

