The Design Document for HuarongDao

Haobo Liu (hl3645), Rui Chu (rc3414), Jiusheng Zhang (jz3444), Jingwei Zhang (jz3555), Nina Hsu (hh2961)

CSEE 4840 Embedded System Spring 2023

Contents

1 Introduction 2
2 System Block Diagram 3
3 Project Algorithm 4
4 Resources Budget 5
5 Hardware/Software Interface 6
Introduction

Our plan is to implement a 2D game that takes a mouse and a keyboard as input, and outputs a VGA display. We choose Huarong Dao, a Chinese variation of Klotski, as a potential game logic. We might switch to other game logics, but we will stick to the overall logic:

Mouse/Keyboard input → 2D Game Logic → VGA Display
System Block Diagram

Game Canvas
- Contains blocks for Hungry Bloo Game

Hardware
- Sound Control
 - Game soundtrack
- Screen
 - Block moving
 - Score, minimum count

Avalon Bus

Software
- Block color location
- Block status
- Game status
- Score refresh

Driver

Game Logics
- main()
- ClickOnBlock()
- moveToSelectBlock()
- ScoreUpdate()
- StepsDemo()
- ...

Joystick

User Input

joystick.c
Project Algorithm

- game logic
 1. Board representation: The game board is represented as a 3x3 grid of squares, with each square either containing a tile or being empty.
 2. Tile movement: When a tile is selected, it can be moved horizontally or vertically to an adjacent empty square. The movement of the tiles is constrained by their size and shape, and the position of the other tiles on the board.
 3. Win condition: The player wins the game when the largest tile, representing the general or king, is moved to the center of the bottom row and out of the board through the exit.
 4. Game state management: The game needs to keep track of the current board state, including the position of each tile, and check for valid moves and the win condition.

- algorithm used to solve the puzzle
 Brute Force Search or A*
Resources Budget

Graphics Memory Budgets

<table>
<thead>
<tr>
<th>Category</th>
<th>Size (bytes)</th>
<th>#</th>
<th>Total size (bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100x100 block</td>
<td>100x100</td>
<td>4</td>
<td>40,000</td>
</tr>
<tr>
<td>100x200 block</td>
<td>100x200</td>
<td>4</td>
<td>80,000</td>
</tr>
<tr>
<td>200x100 block</td>
<td>200x100</td>
<td>1</td>
<td>20,000</td>
</tr>
<tr>
<td>200x200 block</td>
<td>200x200</td>
<td>1</td>
<td>40,000</td>
</tr>
<tr>
<td>Score</td>
<td>100x10</td>
<td>1</td>
<td>1000</td>
</tr>
</tbody>
</table>

Memory budgets (bits) 1,448,000

Audio Memory Budgets

<table>
<thead>
<tr>
<th>BGM</th>
<th>Movement</th>
<th>Win</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Try to limit to ~1,000,000 bits in total
module h_vga(
 input logic clk,
 input logic reset,
 input logic write,
 input logic [15:0] writedata,
 input chipselect,
 input logic [3:0] address,
 output logic [7:0] VGA_R, VGA_G, VGA_B,
 output logic VGA_CLK, VGA_HS, VGA_VS,
 VGA_BLANK_n,
)

Hardware/Software Interface
VGA output layout
output logic VGA_SYNC_n);

writedata: 2-byte data received from the software. The software will send the x_location and y_location of each block, the location of cursor, the location of selector, location of selected block and the score data.

address: the location where the writedata should be written to. There are 14 addresses.