

FPGA Acceleration of Convolutional Neural Networks
Shiwen Tang (st3510), Yufei Qian (yq2352), YuFei Jin (yj2725), Gehui Liang(gl2800)，Yi Wang(yw3903)

1. Introduction
As a class of artificial neural networks (ANNs), convolutional neural networks (CNNs) are one

of the most used algorithms for visual image analysis. Face segmentation is a bio-metric

community research that has received more and more attention in the last two decades with their

application in different fields. Based on the interest of the usage of CNN to solve image

segmentation problems, facial segmentation has been chosen as the task for this project.

However, the traditional general processing unit such as CPU or GPU both cannot provide ideal

running rate for CNN. Thus, in this project, FPGA will be chosen as the processor. As a no

instruction and no shared memory architecture deice, FPGA is a ideal accelerator for the CNN-

based network. To be more specific, the CNN-based network will be designed, pre-trained and

accelerated on a FPGA device. Then it will be used for face segmentation of the image captured

by a camera and shown the segmentation results on the monitor.

2. Block Diagram

Figure 1 Block Diagram

Our block diagram, as shown in Figure 1, is divided into two parts: software and hardware. The

software part runs on the Linux kernel in HPS, and the input data is also stored on the SD card.

In the software part, we use a button to control a USB camera to capture an image, compress it

into a 64*48 8-bit grayscale image, and then send it to the hardware side of the FPGA through

the Avalon Bus. The hardware side mainly includes an input buffer, a controller, and a U-net

kernel and all these blocks are controlled by a Finite state machine. The result of each layer will

be stored in the B-RAM and transmitted as input to the next layer. The U-net will generate a

mask of the face, and the image within the mask will be output to the display via VGA, as shown

in Figure 2 and Figure 3.

Figure 2 The Mask of Face

Figure 3 The Input Photo

3. Algorithm
The simple U-Net is modified from U-Net, consisting of 10 convolutional blocks, 2 upsampling

layers, 2 donwsampling layers, and 2 concatenate layers. The convolutional blocks and

downsampling layers construct the contracting path, which reduces spatial information but

increases feature information. The upsampling layers and convolutional blocks construct the

expansive path, which combines feature and spatial information by using a series of up-

convolutions and merging them with high-resolution features from the contracting path.

3.1 Convolutional Block

 algorithm: Conv2d

 input: an image with size (Cin, H, W); kernel with size (Cout, Cin, 3, 3) for convolution;

the number of channels Cout

 output: an image with size (Cout, H, W)

1 def Conv2d(image, kernel, Cout):

2 output = a zero array with size (Cout, H, W)

3 image = image with 0 padding for all edges //size is (Cin, (H+2), (W+2))

4 for a=0; a<Cout; a++ do

5 for i=0; i<H; i++ do

6 for j=0; j<W; j++ do

7 for b=0; b<Cin; b++ do

8 for x=0; x<3; x++ do

9 for y=0; y<3; y++ do

10 output[a][i][j] += kernel[a][b][x][y]*image[b][i+x][j+y]

11 output[a][i][j] = ReLU(output[a][i][j])

12 return output

3.2 UpSampling Layer

 algorithm: UpSampling

 input: an image with size(C, H, W); kernel with size (C, C, 2, 2) for convolution

 output: an image with size (C, 2H, 2W)

1 def UpSampling(image, kernel):

2 output = a zero array with size (C, 2H, 2W)

3 for a=0; a<C; a++ do

4 for i=0; i<H; i=i+2 do //stride is (2, 2)

5 for j=0; j<W; j=j+2 do

6 for b=0; b<C; b++ do

7 for x=0; x<2; x++ do

8 for y=0; y<2; y++ do

9 output[a][i+x][j+y] += image[a][i][j]*kernel[a][b][x][y]

10 return output

3.3 DownSampling Layer

 algorithm: DownSampling

 input: an image with size (C, 2H, 2W);

 output: an image with size (C, H, W)

1 def DownSampling(image):

2 output = a zero array with size (C, H, W)

3 for a=0; a<C; a++ do

4 for i=0; i<2H; i=i+2 do

5 for j=0; j<2W; j=j+2 do

6 output[i/2][j/2] = max(image[i][j], image[i+1][j], image[i][j+1],

image[i+1][j+1])

7 return output

3.4 Concatenate Layer

 algorithm: Concatenate

 input: image1 and image2 with size (C, H, W)

 output: an image with size (2C, H, W)

1 def Concatenate(image1, image2):

2 for a=0; a<C; a++ do

3 image1.append(image2[a])

4 return image1

4. Resource Budget
The input is a grayscale 64*64 image with 6bits. So, the size of the input should be

64×48×8=24576

According to the Algorithm part, we can get a table about the estimation for memory utilization

as:

Layer Data (Bits) Weights (Bits) Memory Needed

(Bits)

Input 64*48*8 0 24576

Conv2d 96*128*8 8*3*3 98376

Conv2d 96*128*8 8*3*3 98376

downsample 48*64*8 0 24576

Conv2d 48*64*16 16*3*3 49296

Conv2d 48*64*16 16*3*3 49296

downsample 24*32*16 0 12288

Conv2d 24*32*32 32*3*3 24864

Conv2d 24*32*32 32*3*3 24864

upsample 48*64*16 0 49152

concatenate 48*64*32 0 98304

Conv2d 48*64*16 16*3*3 49296

Conv2d 48*64*16 16*3*3 49296

Upsample 96*128*8 0 98304

concatenate 96*128*16 0 196608

Conv2d 96*128*8 8*3*3 98376

Conv2d 96*128*1 1*3*3 12297

Total: 1058145

As the embedded memory of the FPGA is 4450kb, the estimation of memory utilization for our

project is shown as above which is 1059kb. It is totally capable in this project.

5. Hardware-Software Interface
Compared to complex software designs (algorithms), the software/hardware interface is much

simpler. An Avalon bus is used to transfer control and data signals through the hardware

interfaces. We need only two 16-bit input registers to store image data and parameter data.

After being processed into the ideal type (size and gray level), the data will be serially sent to

these two registers and then uploaded to FPGA’s memory. In our design, the output from the

accelerator will be stored in two 16-bit output registers and will be sent back to the software after

each batch. An 8-bit register is utilized to control the accelerator, each bit of the control register

is described below（the last two bits are reserved for further design）:

1. clk: clock signal

2. rst_n: global reset signal, ’1’ to rest and initialize

3. in_enable: enable signal, ’1’ to start the accelerator

4. in_image_data: input signal，’1’ to tell the accelerator to load image data into memory

5. in_parameter_data: input signal, ‘1’ to tell the accelerator to load parameter data into

memory

6. out_ready: ‘1’ means the output is valid, mark the end of the processing

6. Reference
[1] Ronneberger, Olaf & Fischer, Philipp & Brox, Thomas. (2015). U-Net: Convolutional

Networks for Biomedical Image Segmentation. LNCS. 9351. 234-241. 10.1007/978-3-319-

24574-4_28.

