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1. Introduction 
As a class of artificial neural networks (ANNs), convolutional neural networks (CNNs) are one 

of the most used algorithms for visual image analysis. Face segmentation is a bio-metric 

community research that has received more and more attention in the last two decades with their 

application in different fields. Based on the interest of the usage of CNN to solve image 

segmentation problems, facial segmentation has been chosen as the task for this project. 

However, the traditional general processing unit such as CPU or GPU both cannot provide ideal 

running rate for CNN. Thus, in this project, FPGA will be chosen as the processor. As a no 

instruction and no shared memory architecture deice, FPGA is a ideal accelerator for the CNN-

based network. To be more specific, the CNN-based network will be designed, pre-trained and 

accelerated on a FPGA device. Then it will be used for face segmentation of the image captured 

by a camera and shown the segmentation results on the monitor. 

 

2. Block Diagram 

 
Figure 1 Block Diagram 

Our block diagram, as shown in Figure 1, is divided into two parts: software and hardware. The 

software part runs on the Linux kernel in HPS, and the input data is also stored on the SD card. 

In the software part, we use a button to control a USB camera to capture an image, compress it 

into a 64*48 8-bit grayscale image, and then send it to the hardware side of the FPGA through 

the Avalon Bus. The hardware side mainly includes an input buffer, a controller, and a U-net 

kernel and all these blocks are controlled by a Finite state machine. The result of each layer will 

be stored in the B-RAM and transmitted as input to the next layer. The U-net will generate a 



mask of the face, and the image within the mask will be output to the display via VGA, as shown 

in Figure 2 and Figure 3.

 
Figure 2 The Mask of Face 

 
Figure 3 The Input Photo

 

3. Algorithm 
The simple U-Net is modified from U-Net, consisting of 10 convolutional blocks, 2 upsampling 

layers, 2 donwsampling layers, and 2 concatenate layers. The convolutional blocks and 

downsampling layers construct the contracting path, which reduces spatial information but 

increases feature information. The upsampling layers and convolutional blocks construct the 

expansive path, which combines feature and spatial information by using a series of up-

convolutions and merging them with high-resolution features from the contracting path.  

 
 

3.1 Convolutional Block 

 

 algorithm: Conv2d 

 input: an image with size (Cin, H, W); kernel with size (Cout, Cin, 3, 3) for convolution; 

the number of channels Cout 

 output: an image with size (Cout, H, W) 



1 def Conv2d(image, kernel, Cout): 

2  output = a zero array with size (Cout, H, W) 

3  image = image with 0 padding for all edges  //size is (Cin, (H+2), (W+2)) 

4  for a=0; a<Cout; a++ do 

5   for i=0; i<H; i++ do 

6    for j=0; j<W; j++ do 

7     for b=0; b<Cin; b++ do 

8      for x=0; x<3; x++ do 

9       for y=0; y<3; y++ do 

10        output[a][i][j] += kernel[a][b][x][y]*image[b][i+x][j+y] 

11     output[a][i][j] = ReLU(output[a][i][j]) 

12  return output 

 

3.2 UpSampling Layer 

 

 algorithm: UpSampling 

 input: an image with size(C, H, W); kernel with size (C, C, 2, 2) for convolution 

 output: an  image with size (C, 2H, 2W) 

1 def UpSampling(image, kernel): 

2  output = a zero array with size (C, 2H, 2W) 

3  for a=0; a<C; a++ do 

4   for i=0; i<H; i=i+2 do  //stride is (2, 2) 

5    for j=0; j<W; j=j+2 do  

6     for b=0; b<C; b++ do 

7      for x=0; x<2; x++ do 

8       for y=0; y<2; y++ do 

9         output[a][i+x][j+y] += image[a][i][j]*kernel[a][b][x][y] 

10  return output 

 

3.3 DownSampling Layer 

 

 algorithm: DownSampling 

 input: an image with size (C, 2H, 2W);  

 output: an image with size (C, H, W) 

1 def DownSampling(image): 

2  output = a zero array with size (C, H, W) 

3  for a=0; a<C; a++ do 

4   for i=0; i<2H; i=i+2 do 

5    for j=0; j<2W; j=j+2 do 

6     output[i/2][j/2] = max(image[i][j], image[i+1][j], image[i][j+1], 

image[i+1][j+1]) 

7  return output 

 

3.4 Concatenate Layer 

 

 algorithm: Concatenate 



 input: image1 and image2 with size (C, H, W)  

 output: an image with size (2C, H, W)  

1 def Concatenate(image1, image2): 

2  for a=0; a<C; a++ do 

3   image1.append(image2[a]) 

4  return image1 

 

4. Resource Budget 
The input is a grayscale 64*64 image with 6bits. So, the size of the input should be 

64×48×8=24576 

According to the Algorithm part, we can get a table about the estimation for memory utilization 

as: 

Layer  Data (Bits) Weights (Bits) Memory Needed 

(Bits) 

Input 64*48*8 0 24576 

Conv2d 96*128*8 8*3*3 98376 

Conv2d 96*128*8 8*3*3 98376 

downsample 48*64*8 0 24576 

Conv2d 48*64*16 16*3*3 49296 

Conv2d 48*64*16 16*3*3 49296 

downsample 24*32*16 0 12288 

Conv2d 24*32*32 32*3*3 24864 

Conv2d 24*32*32 32*3*3 24864 

upsample 48*64*16 0 49152 

concatenate 48*64*32 0 98304 

Conv2d 48*64*16 16*3*3 49296 

Conv2d 48*64*16 16*3*3 49296 

Upsample 96*128*8 0 98304 

concatenate 96*128*16 0 196608 

Conv2d 96*128*8 8*3*3 98376 

Conv2d 96*128*1 1*3*3 12297 

Total: 1058145 

As the embedded memory of the FPGA is 4450kb, the estimation of memory utilization for our 

project is shown as above which is 1059kb. It is totally capable in this project.  

 

5. Hardware-Software Interface 
Compared to complex software designs (algorithms), the software/hardware interface is much 

simpler.  An Avalon bus is used to transfer control and data signals through the hardware 

interfaces.  We need only two 16-bit input registers to store image data and parameter data.  

After being processed into the ideal type (size and gray level), the data will be serially sent to 

these two registers and then uploaded to FPGA’s memory.  In our design, the output from the 

accelerator will be stored in two 16-bit output registers and will be sent back to the software after 

each batch.  An 8-bit register is utilized to control the accelerator, each bit of the control register 

is described below（the last two bits are reserved for further design）: 

1.  clk: clock signal 



2.  rst_n: global reset signal, ’1’ to rest and initialize 

3.  in_enable: enable signal, ’1’ to start the accelerator 

4.  in_image_data: input signal，’1’ to tell the accelerator to load image data into memory 

5.  in_parameter_data: input signal, ‘1’ to tell the accelerator to load parameter data into 

memory 

6.  out_ready: ‘1’ means the output is valid, mark the end of the processing 
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