
Design Document for Atari Breakout: Candy Edition
Jason Eriksen (jce2148)
Xurxo Riesco (xr2154)

Spring 2022
Table of Contents

1 Introduction 2
2 System Block Diagram 3
3 Algorithms 4
4 Resource Budget 6
5 The Hardware/Software Interface 7
6 References 8



1 Introduction
For our version of Atari Breakout, we plan to implement a variety of components.

Several components will be modified versions of those completed in the prior labs (i.e.

vga_ball), but we also develop several completely new components, like audio and an interface

via joystick instead of keyboard. On the software side, we will utilize a driver similar to that of

Lab 3, but with updated logic to reflect the rules of Atari Breakout, such as the shattering of

bricks, bounces on the paddle, and the changes in speed of the ball. Also, we plan to include

separate display modes for menu, victory, and defeat screens. Additionally, we will develop the

aforementioned user input driver that maps joystick movements to in game actions. This will

all be communicated to the hardware via the avalon bus. The hardware will include the video

logic for displaying the ball, paddle, bricks, as well as the audio logic for the sound effects.



2 System Block Diagram

Figure 1: System Architecture



3 Algorithms
3.1 Software Algorithms
3.1.1 Game rules

The paddle is only allowed to be moved along the horizontal axis. Along the vertical

axis, the rules are simple: if the top part of the ball touches the bottom part of a brick, the brick

is destroyed, if the bottom part of the ball goes below the vertical position of the paddle while

not making contact with it, the player loses a life. If the player is able to remove all the bricks

before running out of lifes, the player wins the game, in contrast, if the player runs out of lives

while there is one or more bricks in the screen, the player loses the game.

3.1.2 Bouncing Ball

The movement of the ball is determined by the position of the ball along both axes,

(x,y), and the velocity of the ball (vx, vy) in the following manner.

Position at t0: (x, y)

Position at t1: (x+vx, y+vy)

When the ball contacts the paddle or the bricks as defined in the Game Rules (3.1.1),

the vycomponent of the velocity is reversed via negation. Similarly, if the leftmost or rightmost

point of the ball makes contact with the left or right wall, the vx component of the velocity is

reversed via negation. The contact with the right wall and brick are portrayed below, with

contact with the left wall and the paddle being direct opposites.



3.1 Hardware Algorithms
3.1.1 Graphics

The hardware just receives the center position of the ball and center position of the

paddle, with the software being responsible for all the calculations. In addition to that the

software receives a bitfield containing the blocks per row and is then responsible for displaying

said blocks in the screen, giving each of the blocks in a given row a particular design. The

design for the blocks, the ball, and the paddle will be stored as sprites in the memory of the

FPGA as well as the necessary game information, such as the lives. The hardware is then

responsible for bringing the correct graphic at the positions determined by the software.

3.1.2 Audio

The hardware will also be responsible for storing 4 different sounds, ball bouncing off

the paddle, ball bouncing off the wall, brick being destroyed, life being lost. The software will

determine when each sound needs to be played and convey said information to the hardware

while it is handling the game logic.



4 Resource Budget
4.1 Video

Image Dimensions # of Sprites Size (bits)

Blocks 64 x 32 4 8,192

Ball 16 x 16 1 256

Paddle 128 x 16 1 2,048

Lives 32 x 32 1 1,024

Start/Win/Loss 64 x 64 3 12,288

Total bits: 23,808

4.2 Audio

Life Lost Brick Destroyed Wall Hit Paddle Hit

time(s) 1.5 0.25 0.25 0.25

fs(kHz) 8 8 8 8

memory 196,608 32,768 32,768 32,768

Total bits: 294,912

4.3 Total bits

The total memory budget adds up to 318,720 bits.

We are well below the memory budget available, so it should be no issue implementing
components of the aforementioned sizes.



5 The Hardware/Software Interface
The total dimensions of the screen are 640 x 480. Therefore, 19 bits are needed to

encode any given position. 10 bits for x component (640 < 210) and 9 bits for the y component

(480 < 29)

Register 1: Ball X Position

Stores the lowest 8 bits of the x component of the ball position.

Register 2: Ball Y Position

Stores the lowest 8 bits of the x component of the ball position.

Register 3: Paddle Position

Stores the lowest 8 bits of the x component of the paddle position. Position in y is fixed.

Register 4: Offsets + Lives

Bits 0-1: Remaining upper 2 bits of the x component of the ball position.

Bit 2: Remaining upper bit of the y component of the ball position.

Bit 3-4: Remaining upper 2 bits of the x component of the paddle position.

Bit 5-7: Each bit represents one of the lives.

Registers 5: Bricks Row 1

Bitfield representing the status of each of the 8 blocks in row 1. (1 exist, 0 broken)

Register 6-8: Brick Rows 2-4

Same as Register 5 for the remaining rows.

Register 9: Game Status & Control

Bits 0-1: Represent game status. (0 not started, 1 playing, 2 win, 3 loss)

Bits 2-3: Represent audio to play (4 sounds)

Bits 4-7: Unused



6 References
- https://www.101computing.net/bouncing-algorithm/
- http://www.cs.columbia.edu/~sedwards/classes/2022/4840-spring/designs/Breakout.pdf
- http://www.cs.columbia.edu/~sedwards/classes/2019/4840-spring/designs/BrickBreaker.pdf

https://www.101computing.net/bouncing-algorithm/
http://www.cs.columbia.edu/~sedwards/classes/2022/4840-spring/designs/Breakout.pdf
http://www.cs.columbia.edu/~sedwards/classes/2019/4840-spring/designs/BrickBreaker.pdf

