
Types and
Pattern Matching

Stephen A. Edwards

Columbia University

Fall 2022

Basic Haskell Types

Function Types

Patterns

The As Pattern

Guards

Algebraic Data Types

Types in Haskell

Haskell is statically typed: every expression’s
type known at compile-time

Haskell has type inference: the compiler can
deduce most types itself

Type names start with a capital letter (Int,
Bool, Char, etc.)

GHCi’s :t command reports the type of any
expression

Read “::” as “is of type”

Prelude> :t 'a'
'a' :: Char

Prelude> :t True
True :: Bool

Prelude> :t "Hello"
"Hello" :: [Char]

Prelude> :t (True, 'a')
(True, 'a') :: (Bool, Char)

Prelude> :t 42 == 17
42 == 17 :: Bool

Some Common Types

Bool Booleans: True or False

Char A single Unicode character, about 25 bits

Int Word-sized integers; the usual integer type. E.g., 64
bits on my x86_64 Linux desktop

Integer Unbounded integers. Less efficient, so only use if you
need really big integers

Float Single-precision floating point

Double Double-precision floating point

The Types of Functions

In a type, -> indicates a function

Prelude> welcome x = "Hello " ++ x
Prelude> welcome "Stephen"
"Hello Stephen"
Prelude> :t welcome
welcome :: [Char] -> [Char]

“Welcome is a function that takes a list of characters and produces a list of
characters”

Multi-argument functions are Curried
Haskell functions have exactly one argument.
Functions with “multiple arguments” are actually
functions that return functions that return functions.

Such “currying” is named after Haskell Brooks Curry,
who is also known for the Curry-Howard
Correspondence (“programs are proofs”).

Prelude> say x y = x++" to "++y
Prelude> :t say
say :: [Char] -> [Char] -> [Char]
Prelude> say "Hello" "Stephen"
"Hello to Stephen"

Prelude> :t say "Hello"
say "Hello" :: [Char] -> [Char]

Prelude> hello s = say "Hello" s
Prelude> hello "Fred"
"Hello to Fred"
Prelude> :t hello
hello :: [Char] -> [Char]
Prelude> hello = say "Hello"
Prelude> hello "George"
"Hello to George"
Prelude> :t hello
hello :: [Char] -> [Char]

Top-level Type Declarations

It is good style in .hs files to include type declarations for top-level functions

Best documentation ever: a precise, compiler-verified function summary

−− addThree.hs
addThree :: Int -> Int -> Int -> Int
addThree x y z = x + y + z

Prelude> :l addThree
[1 of 1] Compiling Main (addThree.hs, interpreted)
Ok, one module loaded.

*Main> :t addThree
addThree :: Int -> Int -> Int -> Int

*Main> addThree 1 2 3
6

Patterns

You can define a function with patterns

Patterns may include literals, variables, and _ “wildcard”

badCount :: Integral a => a -> String
badCount 1 = "One"
badCount 2 = "Two"
badCount _ = "Many"

Patterns are tested in order; put specific first:

factorial :: (Eq a, Num a) => a -> a
factorial 0 = 1
factorial n = n * factorial (n - 1)

Pattern Matching May Fail

Prelude> :{
Prelude| foo 'a' = "Alpha"
Prelude| foo 'b' = "Bravo"
Prelude| foo 'c' = "Charlie"
Prelude| :}
Prelude> :t foo
foo :: Char -> [Char]
Prelude> foo 'a'
"Alpha"
Prelude> foo 'd'
"*** Exception: <interactive>:(23,1)-(25,19): Non-exhaustive

 patterns in function foo

Let the Compiler Check for Missing Cases

Much better to get a compile-time error than a runtime error:

Prelude> :set -Wall
Prelude> :{
Prelude| foo 'a' = "Alpha"
Prelude| foo 'b' = "Bravo"
Prelude| :}

<interactive>:32:1: warning: [-Wincomplete-patterns]
 Pattern match(es) are non-exhaustive
 In an equation for 'foo':
 Patterns not matched: p where p is not one of {'b', 'a'}

Prelude> :set -Wincomplete-patterns

Pattern Matching on Tuples

A tuple in a pattern lets you dismantle the tuple. E.g., to implement fst,

Prelude> fst' (x,_) = x
Prelude> :t fst'
fst' :: (a, b) -> a
Prelude> fst' (42,28)
42
Prelude> fst' ("hello",42)
"hello"

Prelude> addv (x1,y1) (x2,y2) = (x1 + x2, y1 + y2)
Prelude> :t addv
addv :: (Num a, Num b) => (a, b) -> (a, b) -> (a, b)
Prelude> addv (1,10) (7,3)
(8,13)

Patterns in List Comprehensions

Usually, where you can bind a name, you can use a pattern, e.g., in a list
comprehension:

Prelude> :set +m
Prelude> pts = [(a,b,c) | c <- [1..20], b <- [1..c], a <- [1..b],
Prelude| a^2 + b^2 == c^2]
Prelude> pts
[(3,4,5),(6,8,10),(5,12,13),(9,12,15),(8,15,17),(12,16,20)]

Prelude> perimeters = [a + b + c | (a,b,c) <- pts]

Prelude> perimeters
[12,24,30,36,40,48]

Pattern Matching On Lists

You can use : and [,,,]-style expressions in patterns

Like fst, head is implemented with pattern-matching

Prelude> :{
Prelude| head' (x:_) = x
Prelude| head' [] = error "empty list"
Prelude| :}

Prelude> :t head'
head' :: [p] -> p

Prelude> head' "Hello"
'H'

Pattern Matching On Lists
Prelude> :{
Prelude| dumbLength [] = "empty"
Prelude| dumbLength [_] = "singleton"
Prelude| dumbLength [_,_] = "pair"
Prelude| dumbLength [_,_,_] = "triple"
Prelude| dumbLength _ = "four or more"
Prelude| :}

Prelude> :t dumbLength
dumbLength :: [a] -> [Char]
Prelude> dumbLength []
"empty"
Prelude> dumbLength [1,2,3]
"triple"
Prelude> dumbLength (replicate 10 ' ')
"four or more"

List Pattern Matching Is Useful on Strings

Prelude> :{
Prelude| notin ('i':'n':xs) = xs
Prelude| notin xs = "in" ++ xs
Prelude| :}

Prelude> notin "inconceivable!"
"conceivable!"
Prelude> notin "credible"
"incredible"

Pattern Matching On Lists with Recursion

Prelude> :{
Prelude| length' [] = 0
Prelude| length' (_:xs) = 1 + length' xs
Prelude| :}
Prelude> :t length'
length' :: Num p => [a] -> p
Prelude> length' "Hello"
5

Prelude> :{
Prelude| sum' [] = 0
Prelude| sum' (x:xs) = x + sum' xs
Prelude| :}
Prelude> sum' [1,20,300,4000]
4321

The “As Pattern” Names Bigger Parts

Syntax: <name>@<pattern>

Prelude> :{
Prelude| initial "" = "Nothing"
Prelude| initial all@(x:_) = "The first letter of " ++ all ++
Prelude| " is " ++ [x]
Prelude| :}

Prelude> :t initial
initial :: [Char] -> [Char]
Prelude> initial ""
"Nothing"
Prelude> initial "Stephen"
"The first letter of Stephen is S"

Guards: Boolean constraints

Patterns match structure; guards (Boolean expressions after a |) match value

Prelude> :{
Prelude| heightEval h
Prelude| | h < 150 = "You're short"
Prelude| | h < 180 = "You're average"
Prelude| | otherwise = "You're tall" -- otherwise = True
Prelude| :}

Prelude> heightEval 149
"You're short"
Prelude> heightEval 150
"You're average"
Prelude> heightEval 180
"You're tall"

Filter: Keep List Elements That Satisfy a Predicate

odd and filter are Standard Prelude functions

odd n = n ̀ rem` 2 == 1

filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []
filter p (x:xs) | p x = x : filter p xs

 | otherwise = filter p xs

Prelude> filter odd [1..10]
[1,3,5,7,9]

Compare: Returns LT, EQ, or GT
Another Standard Prelude function

x ̀ compare` y
 | x < y = LT
 | x == y = EQ
 | otherwise = GT

Prelude> :t compare
compare :: Ord a => a -> a -> Ordering
Prelude> compare 5 3
GT
Prelude> compare 5 5
EQ
Prelude> compare 5 7
LT
Prelude> 41 ̀ compare` 42
LT

Where: Defining Local Names
triangle :: Int -> Int -> Int -> String
triangle a b c

 | a + b < c || b + c < a || a + c < b = "Impossible"
 | a + b == c || a + c == b || b + c == a = "Flat"
 | right = "Right"
 | acute = "Acute"
 | otherwise = "Obtuse"
 where
 right = aa + bb == cc || aa + cc == bb || bb + cc == aa
 acute = aa + bb > cc && aa + cc > bb && bb + cc > aa
 sqr x = x * x
 (aa, bb, cc) = (sqr a, sqr b, sqr c)

Order of the where clauses does not matter

Indentation of the where clauses must be consistent

Where blocks are attached to declarations

The Primes Example

primes = filterPrime [2..]
 where filterPrime (p:xs) =
 p : filterPrime [x | x <- xs, x ̀ mod` p /= 0]

[2..] The infinite list [2,3,4,...]

where filterPrime Where clause defining filterPrime

(p:xs) Pattern matching on head and tail of list

p : filterPrime ... Recursive function application

[x | x <- xs, x ‘mod‘ p /= 0] List comprehension: everything in xs not
divisible by p

case...of Is a Pattern-Matching Expression

Defining a function with patterns is syntactic sugar for case...of

badCount 1 = "One"
badCount 2 = "Two"
badCount _ = "Many"

is equivalent to

badCount x = case x of
 1 -> "One"
 2 -> "Two"
 _ -> "Many"

But, like let, case...of is an expression and may be used as such:

describeList :: [a] -> String
describeList xs = "The list is " ++ case xs of [] -> "empty"

 [x] -> "a singleton"
 _ -> "two or more"

Algebraic Data Types
data Bool = False | True

Bool: Type Constructor False and True: Data Constructors

Prelude> data MyBool = MyFalse | MyTrue

Prelude> :t MyFalse
MyFalse :: MyBool −− A literal
Prelude> :t MyTrue
MyTrue :: MyBool

Prelude> :t MyBool
<interactive>:1:1: error: Data constructor not in scope: MyBool
Prelude> :k MyBool
MyBool :: * −− A concrete type (no parameters)

Algebraic Types and Pattern Matching
data Bool = False | True

Type constructors may appear in type signatures;
data constructors in expressions and patterns

Prelude> :{
Prelude| myAnd :: Bool -> Bool -> Bool
Prelude| myAnd False _ = False
Prelude| myAnd True x = x
Prelude| :}

Prelude> [(a,b,myAnd a b) | a <- [False, True], b <- [False, True]]
[(False,False,False),(False,True,False),

 (True,False,False),(True,True,True)]

An Algebraic Type: A Sum of Products
data Shape = Circle Float Float Float

 | Rectangle Float Float Float Float

Sum = one of A or B or C...

Product = each of D and E and F...

A.k.a. tagged unions, sum-product types

Mathematically,

Shape=Circle∪Rectangle

Circle= Float×Float×Float

Rectangle= Float×Float×Float×Float

An Algebraic Type: A Sum of Products
data Shape = Circle Float Float Float

 | Rectangle Float Float Float Float

area :: Shape -> Float
area (Circle _ _ r) = pi * r ̂ 2
area (Rectangle x1 y1 x2 y2) = (abs $ x2 - x1) * (abs $ y2 - y1)

*Main> :t Circle
Circle :: Float -> Float -> Float -> Shape

*Main> :t Rectangle
Rectangle :: Float -> Float -> Float -> Float -> Shape

*Main> :k Shape
Shape :: *

*Main> area $ Circle 10 20 10
314.15927

*Main> area $ Rectangle 10 10 20 30
200.0

Types as Documentation

When in doubt, add another type

data Point = Point Float Float deriving Show
data Shape = Circle Point Float

 | Rectangle Point Point
 deriving Show

area :: Shape -> Float
area (Circle _ r) = pi * r ̂ 2
area (Rectangle (Point x1 y1) (Point x2 y2)) =

 (abs $ x2 - x1) * (abs $ y2 - y1)

*Main> area $ Rectangle (Point 10 20) (Point 30 40)
400.0

*Main> area $ Circle (Point 0 0) 100
31415.928

moveTo :: Point -> Shape -> Shape
moveTo p (Circle _ r) = Circle p r
moveTo p@(Point x0 y0) (Rectangle (Point x1 y1) (Point x2 y2)) =

 Rectangle p $ Point (x0 + x2 - x1) (y0 + y2 - y1)

origin :: Point
origin = Point 0 0

originCircle :: Float -> Shape
originCircle = Circle origin −− function in "point-free style"

originRect :: Float -> Float -> Shape
originRect x y = Rectangle origin (Point x y)

Prelude> :l Shapes
[1 of 1] Compiling Shapes (Shapes.hs, interpreted)
Ok, one module loaded.

*Shapes> moveTo (Point 10 20) $ originCircle 5
Circle (Point 10.0 20.0) 5.0

*Shapes> moveTo (Point 10 20) $ Rectangle (Point 5 15) (Point 25 35)
Rectangle (Point 10.0 20.0) (Point 30.0 40.0)

	Basic Haskell Types
	Function Types
	Patterns
	The As Pattern
	Guards

	Algebraic Data Types

