
Typeclasses and
Polymorphism

Stephen A. Edwards

Columbia University

Fall 2022

Polymorphism and Type Variables

Typeclasses

Show and other derived type classes

Parameterized Types: Maybe

The type keyword

The Either Type

Lists as an Algebraic Data Type

Defining Your Own Infix Operators

Specifying and Implementing Type Classes

The Functor Type Class

Kinds: The Type of Types

Numeric Conversions

Polymorphism and Type Variables
Haskell has excellent support for polymorphic functions

Haskell supports parametric polymorphism, where a value may be
of any type

Haskell also supports ad hoc polymorphism, where a value may be
one of a set of types that support a particular group of operations

Parametric polymorphism: the head function

Prelude> :t head
head :: [a] -> a

Here, a is a type variable that ranges over every possible type.

Prelude> :t fst
fst :: (a, b) -> a

Here, a and b are distinct type variables, which may be equal or different

Ad Hoc Polymorphism and Type Classes

Haskell’s ad hoc polymorphism is provided by Type Classes, which specify a
group of operations that can be performed on a type (think Java Interfaces)

Prelude> :t (==)
(==) :: Eq a => a -> a -> Bool

“The (==) function takes two arguments of type a, which must be of the Eq
class, and returns a Bool”

Members of the Eq class can be compared for equality

A type may be in multiple classes; multiple types may implement a class

Common Typeclasses
Eq Equality: == and /=

Ord Ordered: Eq and >, >=, <, <=, max, min, and compare, which gives
an Ordering: LT, EQ, or GT

Enum Enumerable: succ, pred, fromEnum, toEnum (conversion to/from
Int), and list ranges

Bounded minBound, maxBound

Num Numeric: (+), (-), (*), negate, abs, signum, and fromInteger

Real Num, Ord, and toRational

Integral Real, Enum, and quot, rem, div, mod, toInteger, quotRem, divMod

Show Can be turned into a string: show, showList, and showsPrec (op-
erator precedence)

Read Opposite of Show: string can be turned into a value: read et al.

Ord, Enum, and Bounded Typeclasses
Prelude> :t (>)
(>) :: Ord a => a -> a -> Bool
Prelude> :t compare
compare :: Ord a => a -> a -> Ordering

Prelude> :t succ
succ :: Enum a => a -> a

Prelude> maxBound :: Int
9223372036854775807
Prelude> minBound :: Char
'\NUL'
Prelude> maxBound :: Char
'\1114111'
Prelude> minBound :: (Char, Char)
('\NUL','\NUL')

The Num Typeclass
Prelude> :t 42
42 :: Num p => p −− Numeric literals are polymorphic
Prelude> :t (+)
(+) :: Num a => a -> a -> a −− Arithmetic operators are, too

Prelude> :t 1 + 2
1 + 2 :: Num a => a
Prelude> :t (1 + 2) :: Int
(1 + 2) :: Int :: Int −− Forcing the result type
Prelude> :t (1 :: Int) + 2
(1 :: Int) + 2 :: Int −− Type of one argument forces the type

Prelude> :t (1 :: Int) + (2 :: Double)
<interactive>:1:15: error:

 * Couldn't match expected type 'Int' with actual type 'Double'
 * In the second argument of '(+)', namely '(2 :: Double)'
 In the expression: (1 :: Int) + (2 :: Double)

The Integral and Fractional Typeclasses
Prelude> :t div
div :: Integral a => a -> a -> a −− div is integer division
Prelude> :t toInteger
toInteger :: Integral a => a -> Integer −− E.g., Int to Integer
Prelude> :t fromIntegral
fromIntegral :: (Integral a, Num b) => a -> b −− Make more general
Prelude> 1 + 3.2
4.2 −− Fractional
Prelude> (1 :: Int) + 3.2

 * No instance for (Fractional Int) arising from the literal '3.2'
 * In the second argument of '(+)', namely '3.2'
 In the expression: (1 :: Int) + 3.2
 In an equation for 'it': it = (1 :: Int) + 3.2

Prelude> fromIntegral (1 :: Integer) + 3.2
4.2 −− Num + Fractional
Prelude> :t (/)
(/) :: Fractional a => a -> a -> a −− Non−integer division

The Show Typeclass
Show is helpful for debugging

Prelude> :t show
show :: Show a => a -> String
Prelude> show 3
"3"
Prelude> show 3.14159
"3.14159"
Prelude> show pi
"3.141592653589793"
Prelude> show True
"True"
Prelude> show (True, 3.14)
"(True,3.14)"
Prelude> show ["he","llo"]
"[\"he\",\"llo\"]"

Printing User-Defined Types: Deriving Show

*Main> Circle 10 20 30

<interactive>:9:1: error:
 * No instance for (Show Shape) arising from a use of 'print'
 * In a stmt of an interactive GHCi command: print it

Add deriving (Show) to make the compiler generate a default show:

data Shape = Circle Float Float Float
 | Rectangle Float Float Float Float
 deriving Show

*Main> Circle 10 20 30
Circle 10.0 20.0 30.0

*Main> show $ Circle 10 20 30
"Circle 10.0 20.0 30.0"

Many Automatic Derivations
data Bool = False | True −− Standard Prelude definition

 deriving (Eq, Ord, Enum, Read, Show, Bounded)

Prelude> True == True
True −− Eq
Prelude> False < False
False −− Ord
Prelude> succ False
True −− Enum
Prelude> succ True

*** Exception: Prelude.Enum.Bool.succ: bad argument
Prelude> read "True" :: Bool
True −− Read
Prelude> show False
"False" −− Show
Prelude> minBound :: Bool
False −− Bounded

Parameterized Types: Maybe
A safe replacement for null pointers

data Maybe a = Nothing | Just a

The Maybe type constructor is a function with a type parameter (a) that
returns a type (Maybe a).

Prelude> :k Maybe
Maybe :: * -> *

Prelude> Just "your luck"
Just "your luck"
Prelude> :t Just "your luck"
Just "your luck" :: Maybe [Char]
Prelude> :t Nothing
Nothing :: Maybe a
Prelude> :t Just (10 :: Int)
Just (10 :: Int) :: Maybe Int

Maybe In Action
Useful when a function may “fail” and you don’t want to throw an exception

Prelude> :m + Data.List
Prelude Data.List> :t uncons
uncons :: [a] -> Maybe (a, [a])
Prelude Data.List> uncons [1,2,3]
Just (1,[2,3])
Prelude Data.List> uncons []
Nothing

Prelude Data.List> :t lookup
lookup :: Eq a => a -> [(a, b)] -> Maybe b
Prelude Data.List> lookup 5 [(1,2),(5,10)]
Just 10
Prelude Data.List> lookup 6 [(1,2),(5,10)]
Nothing

Data.Map: Multiple Type Parameters

Prelude Data.Map> :k Map
Map :: * -> * -> *

Prelude Data.Map> :t empty
empty :: Map k a

Prelude Data.Map> :t singleton (1::Int) "one"
singleton (1::Int) "one" :: Map Int [Char]

Note: while you can add type class constraints to type constructors, e.g.,

data Ord k => Map k v = ...

it’s bad form to do so. By convention, to reduce verbosity, only functions that
actually rely on the type classes are given such constraints.

The type Keyword: Introduce an Alias
Prelude> type AssocList k v = [(k, v)]
Prelude> :k AssocList
AssocList :: * -> * -> *
Prelude> :{
Prelude| lookup :: Eq k => k -> AssocList k v -> Maybe v
Prelude| lookup _ [] = Nothing
Prelude| lookup k ((x,v):xs) | x == k = Just v
Prelude| | otherwise = lookup k xs
Prelude| :}
Prelude> :t lookup
lookup :: Eq k => k -> AssocList k v -> Maybe v
Prelude> lookup 2 [(1,"one"),(2,"two")]
Just "two"
Prelude> lookup 0 [(1,"one"),(2,"two")]
Nothing
Prelude> :t [(1,"one"),(2,"two")]
[(1,"one"),(2,"two")] :: Num a => [(a, [Char])]

Either: Funky Type Constructor Fun

data Either a b = Left a | Right b
 deriving (Eq, Ord, Read, Show)

Prelude> :k Either
Either :: * -> * -> *
Prelude> Right 20
Right 20
Prelude> Left "Stephen"
Left "Stephen"
Prelude> :t Right "Stephen"
Right "Stephen" :: Either a [Char] −− Only second type inferred
Prelude> :t Left True
Left True :: Either Bool b
Prelude> :k Either Bool
Either Bool :: * -> *

Either: Often a more verbose Maybe

By convention, Left = “failure,” Right = “success”

Prelude> type AssocList k v = [(k,v)]
Prelude> :{
Prelude| lookup :: String -> AssocList String a -> Either String a
Prelude| lookup k [] = Left $ "Could not find " ++ k
Prelude| lookup k ((x,v):xs) | x == k = Right v
Prelude| | otherwise = lookup k xs
Prelude| :}
Prelude> lookup "Stephen" [("Douglas",42),("Don",0)]
Left "Could not find Stephen"
Prelude> lookup "Douglas" [("Douglas",42),("Don",0)]
Right 42

data List a = Cons a (List a) −− A recursive type
 | Nil
 deriving (Eq, Ord, Show, Read)

*Main> :t Nil
Nil :: List a −− Nil is polymorphic
*Main> :t Cons
Cons :: a -> List a -> List a −− Cons is polymorphic
*Main> :k List
List :: * -> * −− Type constructor takes an argument
*Main> Nil
Nil

*Main> 5 ̀ Cons` Nil
Cons 5 Nil

*Main> 4 ̀ Cons` (5 ̀ Cons` Nil)
Cons 4 (Cons 5 Nil)

*Main> :t 'a' ̀ Cons` Nil
'a' ̀ Cons` Nil :: List Char −− Proper type inferred

Lists of Our Own with User-Defined Operators

infixr 5 :.
data List a = a :. List a

 | Nil
 deriving (Eq, Ord, Show, Read)

Haskell symbols are ! # $ % & * + . / < = > ? @ \ ^ | - ~

A (user-defined) operator is a symbol followed by zero or more symbols or :

A (user-defined) constructor is a : followed by one or more symbols or :

*Main> (1 :. 2 :. 3 :. Nil) :: List Int
1 :. (2 :. (3 :. Nil))

*Main> :t (:.)
(:.) :: a -> List a -> List a

Fixity of Standard Prelude Operators
infixr 9 ., !! −− Highest precedence
infixr 8 ̂ , ̂ ^, ** −− Right-associative
infixl 7 *, /, ̀ quot`, ̀ rem`, ̀ div`, ̀ mod`
infixl 6 +, - −− Left-associative
infixr 5 :, ++ −− : is the only builtin
infix 4 ==, /=, <, <=, >=, >, ̀ elem` −− Non-associative
infixr 3 &&
infixr 2 ||
infixl 1 >>, >>=
infixr 1 =<<
infixr 0 $, $!, ̀ seq` −− Lowest precedence

*Main> (1::Int) == 2 == 3
<interactive>:9:1: error:

 Precedence parsing error
 cannot mix '==' [infix 4] and '==' [infix 4] in the
 same infix expression

The List Concatenation Operator

infixr 5 ++. −− Define operator precedence & associativity
(++.) :: List a -> List a -> List a
Nil ++. ys = ys
(x :. xs) ++. ys = x :. (xs ++. ys)

*Main> (1 :. 2 :. 3 :. Nil ++. 4 :. 5:. Nil) :: List Int
1 :. (2 :. (3 :. (4 :. (5 :. Nil))))

The only thing special about lists in Haskell is the [,] syntax

*Main> :k List
List :: * -> *
*Main> :k []
[] :: * -> *

Our List type constructor has the same kind as the built-in list constructor []

data Tree a = Node a (Tree a) (Tree a) −− Unbalanced binary tree
 | Nil
 deriving (Eq, Show, Read)

singleton :: a -> Tree a
singleton x = Node x Nil Nil

insert :: Ord a => a -> Tree a -> Tree a
insert x Nil = singleton x
insert x n@(Node a left right) = case compare x a of

 LT -> Node a (insert x left) right
 GT -> Node a left (insert x right)
 EQ -> n

fromList :: Ord a => [a] -> Tree a
fromList = foldr insert Nil

toList :: Tree a -> [a]
toList Nil = []
toList (Node a l r) = toList l ++ [a] ++ toList r

member :: Ord a => a -> Tree a -> Bool
member _ Nil = False
member x (Node a left right) = case compare x a of

 LT -> member x left
 GT -> member x right
 EQ -> True

*Main> t = fromList ([8,6,4,1,7,3,5] :: [Int])

*Main> t
Node 5 (Node 3 (Node 1 Nil Nil) (Node 4 Nil Nil))

 (Node 7 (Node 6 Nil Nil) (Node 8 Nil Nil))

*Main> toList t
[1,3,4,5,6,7,8]

*Main> 1 ̀ member` t
True

*Main> 42 ̀ member` t
False

Specifying and Implementing Type Classes
class Eq a where −− Standard Prelude definition of Eq

 (==), (/=) :: a -> a -> Bool −− The class: names & signatures
 x /= y = not (x == y) −− Default implementations
 x == y = not (x /= y)

data TrafficLight = Red | Yellow | Green

instance Eq TrafficLight where
 Red == Red = True −− Suffices to only supply
 Green == Green = True −− an implementation of ==
 Yellow == Yellow = True
 _ == _ = False −− "deriving Eq" would have been easier

*Main> Red == Red
True −− Uses TrafficLight defintion of ==
*Main> Red /= Yellow
True −− Relies on default implementation

Implementing Show
instance Show TrafficLight where

 show Red = "Red Light"
 show Green = "Green Light"
 show Yellow = "Yellow Light"

*Main> show Yellow
"Yellow Light"

*Main> [Red, Yellow, Green]
[Red Light,Yellow Light,Green Light] −− GHCi uses show

*Main> :k Maybe
Maybe :: * -> * −− A polymorphic type constructor
*Main> :k Eq
Eq :: * -> Constraint −− Like a polymorphic type constructor
*Main> :k Eq TrafficLight
Eq TrafficLight :: Constraint −− Give it a type to make it happy

The MINIMAL Pragma: Controlling Compiler Warnings
infix 4 ==., /=.

class MyEq a where
 {−# MINIMAL (==.) | (/=.) #−}
 (==.), (/=.) :: a -> a -> Bool
 x /=. y = not (x ==. y)
 x ==. y = not (x /=. y)

instance MyEq Int where

instance MyEq Integer where
 x ==. y = (x ̀ compare` y) == EQ

The MINIMAL pragma tells the compiler
what to check for. Operators are , (and)
and | (or). Parentheses are allowed.

Prelude> :load myeq
[1 of 1] Compiling Main

myeq.hs:9:10: warning:
 [-Wmissing-methods]
 * No explicit implementation for
 either '==.' or '/=.'
 * In the instance declaration
 for 'MyEq Int'
 |

9 | instance MyEq Int where
 | ̂ ^^^^^^^

Eq (Maybe t)

data Maybe t = Just t | Nothing

instance Eq t => Eq (Maybe t) where
 Just x == Just y = x == y −− This comparison requires Eq t
 Nothing == Nothing = True
 _ == _ = False

The Standard Prelude includes this by just deriving Eq

*Main> :info Eq
class Eq a where

 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool
 {-# MINIMAL (==) | (/=) #-}
instance [safe] Eq TrafficLight
instance (Eq a, Eq b) => Eq (Either a b)
instance Eq a => Eq (Maybe a)
instance Eq a => Eq [a]
instance Eq Ordering
instance Eq Int
instance Eq Float
instance Eq Double
instance Eq Char
instance Eq Bool
instance (Eq a, Eq b) => Eq (a, b)
instance (Eq a, Eq b, Eq c) => Eq (a, b, c)
instance (Eq a, Eq b, Eq c, Eq d) => Eq (a, b, c, d)

ToBool: Treat Other Things as Booleans
class ToBool a where

 toBool :: a -> Bool

instance ToBool Bool where
 toBool = id −− Identity function

instance ToBool Int where
 toBool 0 = False −− C-like semantics
 toBool _ = True

instance ToBool [a] where
 toBool [] = False −− JavaScript, python semantics
 toBool _ = True

instance ToBool (Maybe a) where
 toBool (Just _) = True
 toBool Nothing = False

Now We Can toBool Bools, Ints, Lists, and Maybes
*Main> :t toBool
toBool :: ToBool a => a -> Bool

*Main> toBool True
True

*Main> toBool (1 :: Int)
True

*Main> toBool "dumb"
True

*Main> toBool []
False

*Main> toBool [False]
True

*Main> toBool $ Just False
True

*Main> toBool Nothing
False

The Functor Type Class: Should be “Mappable”†
class Functor f where

 fmap :: (a -> b) -> f a -> f b
 (<$) :: b -> f a -> f b
 m <$ b = fmap (_ -> b)

If f :: a -> b,

bs = fmap f as

applies f to every a in as to give bs; bs
= as <$ x replaces every a in as with x.

Here, f is a type constructor that takes
an argument, like Maybe or List

Prelude> :k Functor
Functor :: (* -> *) -> Constraint

† “Functor” is from Category Theory

class Functor (f :: * -> *) where
 fmap :: (a -> b) -> f a -> f b
 (<$) :: a -> f b -> f a
 {−# MINIMAL fmap #−}
instance Functor (Either a)
instance Functor []
instance Functor Maybe
instance Functor IO
instance Functor ((->) r)
instance Functor ((,) a)
−− Many others; these are
−− just the Prelude’s

Functor Instances for * -> * Kinds
data [] a = [] | a : [a] −− The List type: not legal syntax

instance Functor [] where −− Prelude definition
 fmap = map −− The canonical example

data Maybe t = Nothing | Just t −− Prelude definition

instance Functor Maybe where
 fmap _ Nothing = Nothing −− No object a here
 fmap f (Just a) = Just (f a) −− Apply f to the object in Just a

data Tree a = Node a (Tree a) (Tree a) | Nil −− Our binary tree

instance Functor Tree where
 fmap f Nil = Nil
 fmap f (Node a lt rt) = Node (f a) (fmap f lt) (fmap f rt)

Functor Either a

data Either a b = Left a | Right b

instance Either does not type check because Either :: * -> * -> *

The Prelude definition of fmap only modifies Right

instance Functor (Either a) where
 fmap _ (Left x) = Left x
 fmap f (Right y) = Right (f y)

This works because Either a :: * -> * has the right kind

Kinds: The Types of Types
Prelude> :k Int
Int :: * −− A concrete type
Prelude> :k [Int]
[Int] :: * −− A specific type of list: also concrete
Prelude> :k []
[] :: * -> * −− The list type constructor takes a parameter
Prelude> :k Maybe
Maybe :: * -> * −− Maybe also takes a type as a parameter
Prelude> :k Maybe Int
Maybe Int :: * −− Specifying the parameter makes it concrete
Prelude> :k Either
Either :: * -> * -> * −− Either takes two type parameters
Prelude> :k Either String
Either String :: * -> * −− Partially applying Either is OK
Prelude> :k (,)
(,) :: * -> * -> * −− The pair (tuple) constructor takes two

Crazy Kinds
Prelude> class Tofu t where tofu :: j a -> t a j

Type class Tofu expects a single type argument t

j must take an argument a and produce a concrete type, so j :: * -> *

t must take arguments a and j, so t :: * -> (* -> *) -> *

Prelude> :k Tofu
Tofu :: (* -> (* -> *) -> *) -> Constraint

Let’s invent a type constructor of kind * -> (* -> *) -> *. It has to take two
type arguments; the second needs to be a function of one argument

data What a b = What (b a) deriving Show

Prelude> :k What
What :: * -> (* -> *) -> * −− Success

What?
data What a b = What (b a) deriving Show

Prelude> :t What "Hello"
What "Hello" :: What Char []
Prelude> :t What (Just "Ever")
What (Just "Ever") :: What [Char] Maybe

What holds any type that is a “parameterized container,” what Tofu wants:

Prelude> :k What
What :: * -> (* -> *) -> *
Prelude> :k Tofu
Tofu :: (* -> (* -> *) -> *) -> Constraint
Prelude> instance Tofu What where tofu x = What x
Prelude> tofu (Just 'a') :: What Char Maybe
What (Just 'a')
Prelude> tofu "Hello" :: What Char []
What "Hello"

Prelude> data Barry t k a = Barry a (t k)
Prelude> :k Barry
Barry :: (* -> *) -> * -> * -> * −− Bizarre kind, by design
Prelude> :t Barry (5::Int) "Hello"
Barry (5::Int) "Hello" :: Barry [] Char Int

A Barry is two objects: any type and one built from a type constructor
Prelude> :k Functor
Functor :: (* -> *) -> Constraint −− Takes a one−arg constructor

instance Functor (Barry t k) where −− Partially applying Barry
 fmap f (Barry x y) = Barry (f x) y −− Applying f to first object

Prelude> fmap (+1) (Barry 5 "Hello")
Barry 6 "Hello" −− It works!
Prelude> fmap show (Barry 42 "Hello")
Barry "42" "Hello"
Prelude> :t fmap show (Barry 42 "Hello")
fmap show (Barry 42 "Hello") :: Barry [] Char String

class Eq a where
 (==), (/=) :: a -> a -> Bool

class Eq a => Ord a where
 compare :: a -> a -> Ordering
 (<), (<=), (>), (>=) :: a -> a -> Bool
 min, max :: a -> a -> a

class Num a where
 (+), (-), (*) :: a -> a -> a
 negate, abs, signum :: a -> a
 fromInteger :: Integer -> a

class (Num a, Ord a) => Real a where
 toRational :: a -> Rational

class Enum a where
 succ, pred :: a -> a
 toEnum :: Int -> a
 fromEnum :: a -> Int
 ...

Integral Typeclasses and Conversion

class (Real a, Enum a) => Integral a where
 quot, rem, div, mod :: a -> a -> a
 quotRem, divMod :: a -> a -> (a, a)
 toInteger :: a -> Integer

instance Integral Int
instance Integral Word
instance Integral Integer

Conversion among Integrals:

fromIntegral :: (Integral a, Num b) => a -> b
fromIntegral = fromInteger . toInteger

RealFrac Typeclasses and Conversion
class Num a => Fractional a where

 (/) :: a -> a -> a
 recip :: a -> a
 fromRational :: Rational -> a

class (Real a, Fractional a) => RealFrac a where
 properFraction :: Integral b => a -> (b, a)
 truncate, round, ceiling, floor :: Integral b => a -> b

Conversions among Reals and Fractionals:
realToFrac :: (Real a, Fractional b) => a -> b
realToFrac = fromRational . toRational

instance RealFrac Float
instance RealFrac Double

type Rational = GHC.Real.Ratio Integer

Conversion Examples

Prelude> :t 42
42 :: Num p => p
Prelude> :t 42.0
42.0 :: Fractional p => p

Prelude> (fromIntegral (42 :: Int)) :: Word
42
Prelude> (realToFrac (42 :: Int)) :: Double
42.0
Prelude> (realToFrac (42.5 :: Float)) :: Double
42.5
Prelude> (floor (42.5 :: Double)) :: Int
42

https://wiki.haskell.org/Converting_numbers

https://wiki.haskell.org/Converting_numbers

	Polymorphism and Type Variables
	Typeclasses
	Show and other derived type classes

	Parameterized Types: Maybe
	The type keyword
	The Either Type
	Lists as an Algebraic Data Type
	Defining Your Own Infix Operators

	Specifying and Implementing Type Classes
	The Functor Type Class
	Kinds: The Type of Types
	Numeric Conversions

