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Introduction 

I implemented a boolean satisfiability solver using DPLL algorithms[2] 
that take an input of CNF clauses, and output the model if the formula is 
satisfiable and output unsat otherwise. I also convert it to a paralleled 
version to make it faster. 

The Implementation 
0.  CNF File format 
The cnf file format is the one I found online[1]. I made a parser for this file format. The line 
starting with "p" is the program description of how many variables and clauses. The line starting 
with "c" is the comment line. For example,  

p cnf 3 2 
1 -3 0 
2 3 -1 0 

are the clauses:  

(x1 \/ (not x3) \/ x2) /\ (x2\/ x3 \/ (not x1)) 

1. Data Types 
Since we need to represent CNF clauses and each CNF clause contains several literals. Each 
literal can be itself or its negation. The literal can be represented as a data type with two 
constructor Lit String and Not String. Where Lit s represents the symbol itself, Not s represents 
s. A CNF clause can be represented as a type of list of literals. The symbols can be represented as 
a Set of strings. The model can be represented as Map of (String, Bool). 
2. Core functions 

¬



The core function dpll and dpll_eval are just implementations of the DPLL pseudocode, where 
the latter is the sequential version and dpll_eval is the parallelized version. 

data Lit = 
      Lit String 
    | Not String 
  deriving (Show,Eq) 

type CNF = [Lit] 

type Clauses = [CNF] 

type Symbols = Set.Set String 

type M = Map.Map String Bool

dpll :: Symbols -> Clauses -> M -> Maybe M 
dpll symbols cs m  
    | all (isTrueInCNF m) cs = Just m 
    | any (isFalseInCNF m) cs = Nothing 
    | otherwise = case pures of 
                    l@(x:xs) -> dpll unassigned cs new_model 
                    _ -> case findUnit symbols cs m of 
                            Just (s, c, m) -> 
                                dpll s c m 
                            Nothing ->  

dpll_eval2 :: Int -> Symbols -> Clauses -> M -> Maybe M 
dpll_eval2 d symbols cs m  
    | all (\x -> x == True) $ runEval $ parMap (isTrueInCNF m) cs = Just m 
    | any (\x -> x == True) $ runEval $ parMap (isFalseInCNF m) cs = Nothing 
    | otherwise = do case findPure symbols cs of 
                        l@(x:xs) ->  
                            let newm = foldr (\(s,b) acc -> Map.insert s b acc) m l in 
                            let unassigned = foldl (\s x -> Set.delete (fst x) s) symbols l in 
                                  dpll_eval2 d unassigned cs newm 
                        _ -> case findUnit symbols cs m of 
                                Just (s, c, m) -> 
                                  dpll_eval2 d s c m 
                                Nothing ->  
                                    let ele = Set.elemAt 0 symbols in 
                                    let truebranch = dpll_eval2 (d-1) (Set.delete ele symbols) 
cs (Map.insert ele True m) in 
                                    let falsebranch = dpll_eval2 (d-1) (Set.delete ele symbols) 
cs (Map.insert ele False m) in 
                                    if d == 0 
                                    then 
                                        case truebranch of 
                                            Just m -> Just m 
                                            Nothing -> falsebranch 
                                    else 
                                        runEval $ do 
                                                j <- rpar $ falsebranch 
                                                case truebranch of 
                                                    Just m -> do return (Just m) 
                                                    Nothing -> do return j 



The dpll algorithm will find pure literals and unit clauses first, where pure literals refer to the 
symbols that all have the same sign and unit clauses mean that during the current model, the 
clause that only has one literal left unassigned and the rest are assigned false. Then, the dpll will 
do a simplification process that will assign the unit clauses True value and assign pure literals 
True if it is not negative literal, assign False otherwise. If there are no pure literals or unit 
clauses, then dpll will backtrack by assigning an unassigned variable both values and see if either 
one is True. 

3. Helper methods 

  Unit Propagation The unit propagation is to first “unify” the clauses such that all unit clauses 
will be reduced to one element clause. Unit clause means that all literal except one in the clause 
have been set to false, the rest one is not assigned. Then, we find one unit clause and assign the 
literal value to True and simplify the clauses by deleting the clause that contains the unit clause 
literal. Then, we continue the dpll algorithm. 

unitifyClauses :: M -> Clauses -> Clauses 
unitifyClauses m clauses = 
    map unifyCNF clauses 
    where unifyCNF cnf = case getunitassign cnf of 
                           Just (x,_) -> [x] 
                           Nothing -> cnf 
          getunitassign cnf = getIfone $ (filter (\(x,b) -> b) (map findmodel cnf `using` parList 
rpar) `using` parList rpar) 
          findmodel l@(Lit s) = case Map.lookup s m of 
                               Just b -> (l,b) 
                               Nothing -> (l,True) 
          findmodel l@(Not s) = case Map.lookup s m of 
                               Just b -> (l,not b) 
                               Nothing -> (l,True) 
          getIfone [x] = Just x 
          getIfone _ = Nothing 

findUnit :: Symbols -> Clauses -> M -> Maybe (Symbols, Clauses, M) 
findUnit s c m =  
    let clauses = unitifyClauses m c in 
    let unit_clauses = find (\x -> length x == 1 && isNotInM (getSymbol $ head x) m) 
clauses in 
        case unit_clauses of 
            Nothing -> Nothing 
            Just unit -> 
                let newm = Map.insert (getSymbol $ head unit) (getSign $ head unit) m in 
                let symbols = Set.delete (getSymbol $ head unit) s in 
                let simple_clause = simplify clauses unit in 
                    Just (symbols, simple_clause, newm) 
    where isNotInM symbol m = 
           case Map.lookup symbol m of 
            Just _ -> False 
            Nothing -> True 
          simplify clauses unit_clause =  
            filter (\x -> not (hasunit_clause x unit_clause)) clauses 
          hasunit_clause cnf unit_clause = 
            case find (\x -> x == head unit_clause) cnf of 
              Just _ -> True 
              _ -> False 



Pure Literals The pure literals refer to the literals in current clauses that all have the same signs. 
After finding the pure literals, we assign it with True if it is not negation, otherwise assign it 
False.  
 
  
4. Parallelism 

The parallel trick I use in this project is mostly in the main algorithms. In the backtracking part, I 
run the evaluation of both assigning a new variable to True and to False and wait for the first 
result. If the first result comes to True, I just return True and don’t need to wait for another result, 
if the first is False, then I will return the second result. I use the Strategies/Eval monad to 
implement the parallelism. Here I am not caring about evaluating to normal form or WHNF, so 
using rpar and rseq are sufficient. 

I also used Strategies in the helper functions to get list operations and map working faster. 
By using parList on list operations and parMap on map operations,  It becomes much faster than 
only using parallelism in main methods.  

 

findPure :: Symbols -> Clauses -> [(String,Bool)] 
findPure s clause =  
        posassigns ++ negassigns 
    where clausesHavesymbol symbol clause = mapMaybe (ifSymbolInCNF symbol) clause 
          ifSymbolInCNF symbol cnf = 
           case find (\x -> getSymbol x == symbol) cnf of 
             Just lit -> Just (getSign lit) 
             Nothing -> Nothing 
          isAllTrue sp = all (==True) sp 
          isAllFalse sp = all (==False) sp 
          sl = Set.toList s 
          possymbols = filter (\x -> isAllTrue $ clausesHavesymbol x clause) sl 
          negsymbols = filter (\x -> isAllFalse $ clausesHavesymbol x clause) sl 
          posassigns = map (\x -> (x, True)) possymbols 
          negassigns = map (\x -> (x, False)) negsymbols 

runEval $ do 
             let ele = Set.elemAt 0 symbols 
             i <- rpar $ dpll_eval2 (Set.delete ele symbols) cs (Map.insert ele True m) 
             j <- rpar $ dpll_eval2 (Set.delete ele symbols) cs (Map.insert ele False m) 
             rseq i 
             case i of 
               Just m -> do return (Just m) 
               Nothing -> do rseq j 
                             return j 



5. Evaluation 

There is a substantial time difference between the parallelized version vs sequential versions as 
the input gets bigger. I use several tests of CNF files[1] to run in the both sequential version and 
parallelized version.  

There are also some limitations to the testing. Since the time depends more on the difficulty of 
each individual problem, it is meaningless to make a plot of a function of input size vs time. 
(One 60-variable test can be solved in 1s, but the other might take 3 mins). But there is some 
pattern here, in small tests examples, the time differences are small and can be ignored; in large 
and hard examples, the parallel running time is generally 5-7 times faster than then sequential 
one. 

# threads vs time I test the speed up with a 42-variable and 133 clauses file. The plot shows that 
time decreases as the thread increase. At first, it decreases by nearly 50%, and then it decreases 
slowly as the thread increase. 

Balance The balance is pretty good for large files. For small files, they only need one thread to 
be solved. (they will be solved during unit propagation and pure literal finding and will not enter 
parallelized part).  



A 50 variable, 80 clauses sat file 

Testing 

1) The first one is a 60-variable and 160-clause unsatisfiable CNF file[2] (in the source file). 
This file is a little complex cnf file and it takes 4 mins for the parallel version to output unsat but 
takes 37 minutes for the sequential version. 

 



 

2)  The second test is the easy satisfiable one but still with 100 variables and 160 clauses. It takes 
0.6s for the parallel version, 4s for the sequential version. The parallel version is about 6 times 
faster than the sequential version. 

3) The third test is also a hard 63-variable, 168 clauses unsatisfiable cnf file. It takes 9 mins to 
run for the parallel version, and it takes much longer(more than 1 hour) to run for the sequential 
version.(I canceled it since it is takes too long) 
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